Vacancy relaxation in cuprous oxide (Cu2-xO1-y)

被引:20
作者
Frazer, Laszlo [1 ,2 ]
Chang, Kelvin B. [3 ]
Schaller, Richard D. [3 ,4 ]
Poeppelmeier, Kenneth R. [3 ,5 ]
Ketterson, John B. [6 ,7 ]
机构
[1] Temple Univ, Dept Chem, 1901 N 13th St, Philadelphia, PA 19122 USA
[2] Temple Univ, Ctr Computat Design Funct Layered Mat, 1901 N 13th St, Philadelphia, PA 19122 USA
[3] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave,Bldg 440, Argonne, IL 60439 USA
[5] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA
[6] Northwestern Univ, Dept Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Elect Engn & Comp Sci, 2145 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Vacancy; Cuprous oxide; Phonon; Exciton; Stoichiometry; Bound exciton; EXCITON LUMINESCENCE; COPPER VACANCIES; OXYGEN VACANCIES; PHONON EMISSION; CU2O; PHOTOLUMINESCENCE; SPECTROSCOPY; PARAEXCITONS; ABSORPTION; CRYSTALS;
D O I
10.1016/j.jlumin.2016.11.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phonons are produced when an excited vacancy in cuprous oxide (Cu2O) relaxes. Time resolved luminescence was used to find the excited copper vacancy (acceptor) and oxygen vacancy (donor) trap levels and lifetimes. It was also used to determine the typical energy and number of phonons in the phonon pulses emitted by vacancies. The vacancy properties of cuprous oxide are controlled by several synthesis parameters and by the temperature. We directly demonstrate the absorption of light by oxygen vacancies with transient absorption. Copper and oxygen vacancies behave differently, in part because the two kinds of traps capture carriers from different states. For example, the copper vacancy luminescence lifetime is around 25 times greater at low temperature. However, both kinds of vacancy luminescence are consistent with a Poissonian multiple phonon emission model. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 51 条
[1]  
Assal J, 1997, J AM CERAM SOC, V80, P3054, DOI 10.1111/j.1151-2916.1997.tb03232.x
[2]   OPTICAL ABSORPTION OF CUPROUS OXIDE [J].
BAUMEISTER, P .
PHYSICAL REVIEW, 1961, 121 (02) :359-&
[3]   First-Principles Predictions of the Structure, Stability, and Photocatalytic Potential of Cu2O Surfaces [J].
Bendavid, Leah Isseroff ;
Carter, Emily A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (49) :15750-15760
[4]   Removal of Copper Vacancies in Cuprous Oxide Single Crystals Grown by the Floating Zone Method [J].
Chang, Kelvin B. ;
Frazer, Laszlo ;
Schwartz, Johanna J. ;
Ketterson, John B. ;
Poeppelmeier, Kenneth R. .
CRYSTAL GROWTH & DESIGN, 2013, 13 (11) :4914-4922
[5]  
Clark R.N., P 7 ANN JPL AIRB EAR, P67
[6]   Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design [J].
Dietzek, B. ;
Pascher, T. ;
Sundstrom, V. ;
Yartsev, A. .
LASER PHYSICS LETTERS, 2007, 4 (01) :38-43
[7]   SYMMETRY OF EXCITONS IN CU2O [J].
ELLIOTT, RJ .
PHYSICAL REVIEW, 1961, 124 (02) :340-&
[8]  
Frazer L., 2014, THESIS
[9]   Cupric oxide inclusions in cuprous oxide crystals grown by the floating zone method [J].
Frazer, Laszlo ;
Chang, Kelvin B. ;
Poeppelmeier, Kenneth R. ;
Ketterson, John B. .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2015, 16 (03)
[10]   Evaluation of defects in cuprous oxide through exciton luminescence imaging [J].
Frazer, Laszlo ;
Lenferink, Erik J. ;
Chang, Kelvin B. ;
Poeppelmeier, Kenneth R. ;
Stern, Nathaniel P. ;
Ketterson, John B. .
JOURNAL OF LUMINESCENCE, 2015, 159 :294-302