Null-homologous exotic surfaces in 4-manifolds

被引:1
作者
Hoffman, Neil R. [1 ]
Sunukjian, Nathan S. [2 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[2] Calvin Univ, Math & Stat Dept, Grand Rapids, MI USA
关键词
KNOTTED SURFACES;
D O I
10.2140/agt.2020.20.2677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit infinite families of embedded tori in 4-manifolds that are topologically isotopic but smoothly distinct. The interesting thing about these tori is that they are topologically trivial in the sense that each bounds a topologically embedded solid handlebody. This implies that there are stably ribbon surfaces in 4-manifolds that are not ribbon.
引用
收藏
页码:2677 / 2685
页数:9
相关论文
共 14 条
[1]   Knotted surfaces in 4-manifolds and stabilizations [J].
Baykur, R. Inanc ;
Sunukjian, Nathan .
JOURNAL OF TOPOLOGY, 2016, 9 (01) :215-231
[2]  
Burde G., 2003, DEGRUYTER STUD MATH, V5
[3]  
Fintushel R, 1997, MATH RES LETT, V4, P907
[4]   Knots, links, and 4-manifolds [J].
Fintushel, R ;
Stern, RJ .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :363-400
[5]  
Fintushel R., 2006, Clay Math. Proc., V5, P195
[6]   2-BRIDGE KNOTS WITH UNKNOTTING NUMBER ONE [J].
KANENOBU, T ;
MURAKAMI, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) :499-502
[7]  
Kawauchi A, 2018, PREPRINT
[8]   Topological triviality of smoothly knotted surfaces in 4-manifolds [J].
Kim, Hee Jung ;
Ruberman, Daniel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) :5869-5881
[9]   Smooth surfaces with non-simply-connected complements [J].
Kim, Hee Jung ;
Ruberman, Daniel .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (04) :2263-2287
[10]   Modifying surfaces in 4-manifolds by twist spinning [J].
Kim, HJ .
GEOMETRY & TOPOLOGY, 2006, 10 :27-56