Two-phonon scattering in graphene in the quantum Hall regime

被引:3
作者
Alexeev, A. M. [1 ]
Hartmann, R. R. [2 ]
Portnoi, M. E. [1 ,3 ]
机构
[1] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England
[2] De La Salle Univ, Manila 1004, Philippines
[3] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59072970 Natal, RN, Brazil
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 19期
基金
欧盟地平线“2020”;
关键词
STRONG MAGNETIC-FIELD; ACTIVATED CONDUCTIVITY; RESISTANCE STANDARD; BORON-NITRIDE; GRAPHITE; ELECTRONS; FILMS;
D O I
10.1103/PhysRevB.92.195431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the most distinctive features of graphene is its huge inter-Landau-level splitting in experimentally attainable magnetic fields which results in the room-temperature quantum Hall effect. In this paper we calculate the longitudinal conductivity induced by two-phonon scattering in graphene in a quantizing magnetic field at elevated temperatures. It is concluded that the purely phonon-induced scattering, negligible for conventional semiconductor heterostructures under quantum Hall conditions, becomes comparable to the disorder-induced contribution to the dissipative conductivity of graphene in the quantum Hall regime.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene
    Alexander-Webber, J. A.
    Baker, A. M. R.
    Janssen, T. J. B. M.
    Tzalenchuk, A.
    Lara-Avila, S.
    Kubatkin, S.
    Yakimova, R.
    Piot, B. A.
    Maude, D. K.
    Nicholas, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [2] Tuning gaps and phases of a two-subband system in a quantizing magnetic field
    Apalkov, VM
    Portnoi, ME
    [J]. PHYSICAL REVIEW B, 2002, 65 (12) : 1253101 - 1253106
  • [3] Apalkov VM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.121303
  • [4] Two-subband system in quantizing magnetic field: probing many-body gap by non-equilibrium phonons
    Apalkov, VM
    Portnoi, ME
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 15 (03) : 202 - 210
  • [5] Temperature-dependent transport in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Hone, J.
    Stormer, H. L.
    Kim, P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [6] BYCHKOV YA, 1981, JETP LETT+, V34, P473
  • [7] Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons
    Castro, Eduardo V.
    Ochoa, H.
    Katsnelson, M. I.
    Gorbachev, R. V.
    Elias, D. C.
    Novoselov, K. S.
    Geim, A. K.
    Guinea, F.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [8] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [9] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [10] EXPERIMENTAL TESTS OF FRACTIONAL QUANTUM HALL-EFFECT THEORY
    CLARK, RG
    MALLETT, JR
    USHER, A
    SUCKLING, AM
    NICHOLAS, RJ
    HAYNES, SR
    JOURNAUX, Y
    HARRIS, JJ
    FOXON, CT
    [J]. SURFACE SCIENCE, 1988, 196 (1-3) : 219 - 235