ONE-DIMENSIONAL MARKOV RANDOM FIELDS, MARKOV CHAINS AND TOPOLOGICAL MARKOV FIELDS

被引:0
作者
Chandgotia, Nishant [1 ]
Han, Guangyue
Marcus, Brian
Meyerovitch, Tom
Pavlov, Ronnie
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
SOFIC SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological Markov chain is the support of an ordinary first-order Markov chain. We develop the concept of topological Markov field (TMF), which is the support of a Markov random field. Using this, we show that any one-dimensional (discrete-time, finite-alphabet) stationary Markov random field must be a stationary Markov chain, and we give a version of this result for continuous-time processes. We also give a general finite procedure for deciding if a given shift space is a TMF.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1964, T AM MATH SOC, DOI DOI 10.1090/S0002-9947-1964-0161372-1
[2]  
[Anonymous], 1998, CAMBRIDGE SERIES STA
[3]  
[Anonymous], 1996, GRAPHICAL MODELS
[4]  
Chandgotia Nishant, 2011, THESIS U BRIT COLUMB
[5]  
DOBRUSHIN RL, 1968, THEOR PROBAB APPL, V13, P197
[6]   On the toric algebra of graphical models [J].
Geiger, Dan ;
Meek, Christopher ;
Sturmfels, Bernd .
ANNALS OF STATISTICS, 2006, 34 (03) :1463-1492
[7]  
Georgii H.-O., 1988, DEGRUYTER STUDIES MA, V9
[8]   Dynamical systems of continuous spectra [J].
Koopman, BO ;
von Neumann, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1932, 18 :255-263
[9]   ON SOFIC SYSTEMS .1. [J].
KRIEGER, W .
ISRAEL JOURNAL OF MATHEMATICS, 1984, 48 (04) :305-330
[10]  
Lind D, 1995, An introduction to symbolic dynamics and coding