OPTIMAL BILINEAR CONTROL OF NONLINEAR HARTREE EQUATION IN R3

被引:0
作者
Feng, Binhua [1 ]
Liu, Jiayin [1 ]
Zheng, Jun [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Southwest Jiaotong Univ, Basic Course Dept, Leshan 614202, Sichuan, Peoples R China
基金
中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns with the optimal bilinear control for the nonlinear Hartree equation in R-3, which describes the mean-field limit of many-body quantum systems. We show the well-posedness of the problem and the existence of an optimal control. In addition, we derive the first-order optimality system.
引用
收藏
页数:14
相关论文
共 16 条
  • [1] [Anonymous], 1971, OPTIMAL CONTROL SYST
  • [2] [Anonymous], 2007, Mathematical Surveys and Monographs
  • [3] Regularity for a Schrodinger equation with singular potentials and application to bilinear optimal control
    Baudouin, L
    Kavian, O
    Puel, JP
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 216 (01) : 188 - 222
  • [4] Constructive solution of a bilinear optimal control problem for a Schrodinger equation
    Baudouin, Lucie
    Salomon, Julien
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (06) : 453 - 464
  • [5] Nonadiabatic control of Bose-Einstein condensation in optical traps
    Bulatov, A
    Vugmeister, BE
    Rabitz, H
    [J]. PHYSICAL REVIEW A, 1999, 60 (06): : 4875 - 4881
  • [6] Cazenave T, 2003, Semilinear Schrodinger Equations
  • [7] Fattorini H.O., 1999, Infinite Dimensional Optimization and Control Theory
  • [8] Frolich J., 2004, SEMINAIRE EQUATIONS, P26
  • [9] Hintermuller M., ARXIV12022306
  • [10] Optimal quantum control of Bose-Einstein condensates in magnetic microtraps
    Hohenester, Ulrich
    Rekdal, Per Kristian
    Borzi, Alfio
    Schmiedmayer, Joerg
    [J]. PHYSICAL REVIEW A, 2007, 75 (02):