Renormalization group analysis for singularities in the wave beam self-focusing problem

被引:7
作者
Kovalev, VF [1 ]
机构
[1] RAS, Inst Math Modeling, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/BF02557382
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A singular solution of the boundary value problem for the system of equations describing wave beam self-focusing is investigated by constructing renormalization group symmetries. New analytic expressions are found that characterize the spatial evolution of a beam with an arbitrary initial profile in a medium with cubic nonlinearity. The behavior of a Gaussian beam is thoroughly analyzed up to the moment the solution singularity is formed, and a hypothesis is proposed for describing the solution structure after the singularity occurs.
引用
收藏
页码:719 / 730
页数:12
相关论文
共 31 条
[1]   SELF-FOCUSING AND DIFFRACTION OF LIGHT IN A NONLINEAR MEDIUM [J].
AKHMANOV, SA ;
SUKHORUKOV, AP ;
KHOKHLOV, RV .
SOVIET PHYSICS USPEKHI-USSR, 1968, 10 (05) :609-+
[2]  
AKHMANOV SA, 1966, ZH EKSP TEOR FIZ, V23, P1025
[3]   VARIATIONAL APPROACH TO NON-LINEAR SELF-FOCUSING OF GAUSSIAN LASER-BEAMS [J].
ANDERSON, D ;
BONNEDAL, M .
PHYSICS OF FLUIDS, 1979, 22 (01) :105-109
[4]  
ANDREEV VA, 1991, T FIAN PN LEBEDEVA, V211, P3
[5]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[6]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[7]   RADIATION SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION [J].
ENNS, RH ;
RANGNEKAR, SS .
CANADIAN JOURNAL OF PHYSICS, 1985, 63 (05) :632-641
[8]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1493-1511
[9]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .2. EXACT-SOLUTIONS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :469-497
[10]   EXACT-SOLUTIONS OF THE CUBIC AND QUINTIC NONLINEAR SCHRODINGER-EQUATION FOR A CYLINDRICAL GEOMETRY [J].
GAGNON, L ;
WINTERNITZ, P .
PHYSICAL REVIEW A, 1989, 39 (01) :296-306