Lattice tiling and density conditions for subspace Gabor frames

被引:29
作者
Gabardo, Jean-Pierre [1 ]
Han, Deguang [2 ]
Li, Yun-Zhang [3 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[3] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Frame; Gabor frame; Tiling; Translation and modulation operators; WEYL-HEISENBERG FRAMES;
D O I
10.1016/j.jfa.2013.05.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The well known density theorem in time-frequency analysis establishes the connection between the existence of a Gabor frame G(g, A, B) = {e(2 pi i < Bm,x >) g(x - An): m, n is an element of Z(d)} for L-2(R-d) and the density of the time-frequency lattice AZ(d) x BZ(d). This is also tightly related to lattice tiling and packing. In this paper we investigate the density theorem for Gabor systems in L-2(S) with S being an AZ(d)-periodic subset of R-d. We characterize the existence of a Gabor frame for L-2(S) in terms of a condition that involves the Haar measure of the group generated by AZ(d) and (B-t)(-1)Z(d). This new characterization is used to recover the density theorem and several related known results in the literature. Additionally we apply this approach to obtain the density theorems for multi-windowed and super Gabor frames for L-2(S). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1170 / 1189
页数:20
相关论文
共 19 条
[1]  
[Anonymous], 2016, Appl. Numer. Harmon. Anal
[2]  
[Anonymous], 1990, C MATHEMATICUM
[3]   Modern tools for Weyl-Heisenberg (Gabor) frame theory [J].
Casazza, PG .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 115, 2001, 115 :1-127
[4]   Weyl-Heisenberg frames for subspaces of L2 (R) [J].
Casazza, PG ;
Christensen, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (01) :145-154
[5]  
Christensen O, 1999, APPL COMPUT HARMON A, V7, P292, DOI 10.1006/acha.1998.0271
[6]  
Daubechies I., 1995, J. Fourier Anal. Appl., V1, P437, DOI 10.1007/s00041-001-4018-3
[7]  
Feichtinger H. G., 2003, ADV GABOR ANAL APPL
[8]  
Feichtinger H. G., 1998, GABOR ANAL ALGORITHM
[9]   Density results for Gabor systems associated with periodic subsets of the real line [J].
Gabardo, Jean-Pierre ;
Li, Yun-Zhang .
JOURNAL OF APPROXIMATION THEORY, 2009, 157 (02) :172-192
[10]   Balian-Low phenomenon for subspace Gabor frames [J].
Gabardo, JP ;
Han, DG .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) :3362-3378