Augmenting outerplanar graphs

被引:28
作者
Kant, G
机构
[1] Department of Computer Science, Utrecht University, 3508 TB Utrecht
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 1996年 / 21卷 / 01期
关键词
D O I
10.1006/jagm.1996.0034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we show that for outerplanar graphs G the problem of augmenting G by adding a minimum number of edges such that the augmented graph G' is planar and bridge-connected, biconnected, or triconnected can be solved in linear time and space. It is also shown that augmenting a biconnected outerplanar graph to a maximal outerplanar graph while minimizing the maximum degree can be achieved in polynomial time. These augmentation problems arise in the area of drawing outerplanar graphs. (C) 1996 Academic Press, Inc.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 29 条
  • [1] TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS
    BOOTH, KS
    LUEKER, GS
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) : 335 - 379
  • [2] ALGORITHMS FOR DRAWING GRAPHS - AN ANNOTATED-BIBLIOGRAPHY
    DIBATTISTA, G
    EADES, P
    TAMASSIA, R
    TOLLIS, IG
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (05): : 235 - 282
  • [3] EDELSBRUNNER H, 1991, 497 CS U ILL URB CHA
  • [4] EDELSBRUNNER H, 1991, P 32 ANN IEEE S FDN, P548
  • [5] EDELSBRUNNER H, 1990, 6TH P ANN S COMP GEO, P44
  • [6] Eswaran K. P., 1976, SIAM Journal on Computing, V5, P653, DOI 10.1137/0205044
  • [7] FRANK A, 1990, ANN IEEE SYMP FOUND, P708
  • [8] APPROXIMATION ALGORITHMS FOR SEVERAL GRAPH AUGMENTATION PROBLEMS
    FREDERICKSON, GN
    JAJA, J
    [J]. SIAM JOURNAL ON COMPUTING, 1981, 10 (02) : 270 - 283
  • [9] GABOW HN, 1991, PROCEEDINGS - 32ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, P812, DOI 10.1109/SFCS.1991.185453
  • [10] GARG A, 1994, P 2 ANN EUR S ALG, P12