POISSON-DIRICHLET BRANCHING RANDOM WALKS

被引:9
作者
Addario-Berry, Louigi [1 ]
Ford, Kevin [2 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2K6, Canada
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Branching random walk; random recursive tree; Pratt tree; heights of trees; ARY SEARCH-TREES; MINIMAL POSITION; WEAK-CONVERGENCE; HEIGHTS;
D O I
10.1214/12-AAP840
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We determine, to within 0(1), the expected minimal position at level n in certain branching random walks. The walks under consideration have displacement vector (nu 1, nu 2, ... ), where each vi is the sum of j independent Exponential(1) random variables and the different vi need not be independent. In particular, our analysis applies to the Poisson-Dirichlet branching random walk and to the Poisson-weighted infinite tree. As a corollary, we also determine the expected height of a random recursive tree to within O(1).
引用
收藏
页码:283 / 307
页数:25
相关论文
共 23 条
[1]   MINIMA IN BRANCHING RANDOM WALKS [J].
Addario-Berry, Louigi ;
Reed, Bruce .
ANNALS OF PROBABILITY, 2009, 37 (03) :1044-1079
[2]   WEAK CONVERGENCE FOR THE MINIMAL POSITION IN A BRANCHING RANDOM WALK: A SIMPLE PROOF [J].
Aidekon, Elie ;
Shi, Zhan .
PERIODICA MATHEMATICA HUNGARICA, 2010, 61 (1-2) :43-54
[3]  
Aldous D, 2004, ENCYL MATH SCI, V110, P1
[4]  
[Anonymous], CONVERGENCE LAW MINI
[5]  
[Anonymous], 2006, LECT NOTES MATH
[6]   Limit theorems for the minimal position in a branching random walk with independent logconcave displacements [J].
Bachmann, M .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (01) :159-176
[7]  
Bertoin J., 2006, Cambridge Studies in Advanced Mathematics, V102
[8]   1ST-BIRTH AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING-PROCESS [J].
BIGGINS, JD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) :446-459
[9]   CHERNOFFS THEOREM IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (03) :630-636
[10]  
Billingsley P., 1972, Period. Math. Hungar., V2, P283, DOI 10.1007/BF02018667