Terahertz detectors from Be-doped low-temperature grown InGaAs/InAlAs: Interplay of annealing and terahertz performance

被引:25
作者
Globisch, B. [1 ]
Dietz, R. J. B. [1 ]
Nellen, S. [1 ]
Goebel, T. [1 ]
Schell, M. [1 ]
机构
[1] Fraunhofer Inst Telecommun, Heinrich Hertz Inst, Einsteinufer 37, D-10587 Berlin, Germany
来源
AIP ADVANCES | 2016年 / 6卷 / 12期
关键词
SCANNING-TUNNELING-MICROSCOPY; ULTRAFAST CARRIER DYNAMICS; TIME-DOMAIN SPECTROMETER; 1.55; MU-M; QUANTUM-WELLS; PHOTOCONDUCTIVE ANTENNAS; SEMIINSULATING GAAS; DEFECTS; EPITAXY; LAYERS;
D O I
10.1063/1.4971843
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influence of post-growth annealing on the electrical properties, the transient carrier dynamics and the performance as THz photoconductive receiver of Beryllium (Be) doped InGaAs/InAlAs multilayer heterostructures grown at 130 degrees C in a molecular beam epitaxy (MBE) system was investigated. We studied samples with nominally Be doping concentrations of 8 x 10(17) cm(-3) - 1.2 x 10(19) cm(3) annealed for 15 min. - 120 min. at temperatures between 500 degrees C - 600 degrees C. In contrast to previous publications, the results show consistently that annealing increases the electron lifetime of the material. In analogy to the annealing properties of low-temperature grown(LTG) GaAs we explain our findings by the precipitation of arsenic antisite defects. The knowledge of the influence of annealing on the material properties allowed for the fabrication of broadband THz photoconductive receivers with an electron lifetime below 300 fs and varying electrical properties. We found that the noise of the detected THz pulse trace in time-domain spectroscopy (TDS) was directly determined by the resistance of the photoconductive receiver and the peak-to-peak amplitude of the THz pulse correlated with the electron mobility. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 46 条
[1]   All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers [J].
Baker, C ;
Gregory, IS ;
Evans, MJ ;
Tribe, R ;
Linfield, EH ;
Missous, M .
OPTICS EXPRESS, 2005, 13 (23) :9639-9644
[2]   Ultrafast optical nonlinearity of low-temperature-grown GaInAs/AlInAs quantum wells at wavelengths around 1.55 μm [J].
Biermann, K ;
Nickel, D ;
Reimann, K ;
Woerner, M ;
Elsaesser, T ;
Künzel, H .
APPLIED PHYSICS LETTERS, 2002, 80 (11) :1936-1938
[3]  
BLISS DE, 1993, J ELECTRON MATER, V22, P1401, DOI 10.1007/BF02649985
[4]   ANNEALING STUDIES OF LOW-TEMPERATURE-GROWN GAAS-BE [J].
BLISS, DE ;
WALUKIEWICZ, W ;
AGER, JW ;
HALLER, EE ;
CHAN, KT ;
TANIGAWA, S .
JOURNAL OF APPLIED PHYSICS, 1992, 71 (04) :1699-1707
[5]   The behavior of As precipitates in low-temperature-grown GaAs [J].
Bourgoin, JC ;
Khirouni, K ;
Stellmacher, M .
APPLIED PHYSICS LETTERS, 1998, 72 (04) :442-444
[6]   Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range [J].
Dietz, Roman J. B. ;
Globisch, Bjoern ;
Roehle, Helmut ;
Stanze, Dennis ;
Goebel, Thorsten ;
Schell, Martin .
OPTICS EXPRESS, 2014, 22 (16) :19411-19422
[7]   OBSERVATION OF BULK DEFECTS BY SCANNING-TUNNELING-MICROSCOPY AND SPECTROSCOPY - ARSENIC ANTISITE DEFECTS IN GAAS [J].
FEENSTRA, RM ;
WOODALL, JM ;
PETTIT, GD .
PHYSICAL REVIEW LETTERS, 1993, 71 (08) :1176-1179
[8]   Ga vacancies in low-temperature-grown GaAs identified by slow positrons [J].
Gebauer, J ;
KrauseRehberg, R ;
Eichler, S ;
Luysberg, M ;
Sohn, H ;
Weber, ER .
APPLIED PHYSICS LETTERS, 1997, 71 (05) :638-640
[9]   Does beryllium doping suppress the formation of Ga vacancies in nonstoichiometric GaAs layers grown at low temperatures? [J].
Gebauer, J ;
Zhao, R ;
Specht, P ;
Weber, ER ;
Börner, F ;
Redmann, F ;
Krause-Rehberg, R .
APPLIED PHYSICS LETTERS, 2001, 79 (26) :4313-4315
[10]   Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs [J].
Globisch, B. ;
Dietz, R. J. B. ;
Stanze, D. ;
Goebel, T. ;
Schell, M. .
APPLIED PHYSICS LETTERS, 2014, 104 (17)