Performance Measures and a Data Set for Multi-target, Multi-camera Tracking

被引:2100
作者
Ristani, Ergys [1 ]
Solera, Francesco [2 ]
Zou, Roger [1 ]
Cucchiara, Rita [2 ]
Tomasi, Carlo [1 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
[2] Univ Modena & Reggio Emilia, Dept Engn, Modena, Italy
来源
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II | 2016年 / 9914卷
基金
美国国家科学基金会;
关键词
Performance evaluation; Multi camera tracking; Identity management; Multi camera data set; Large scale data set; TARGET TRACKING;
D O I
10.1007/978-3-319-48881-3_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To help accelerate progress in multi-target, multi-camera tracking systems, we present (i) a new pair of precision-recall measures of performance that treats errors of all types uniformly and emphasizes correct identification over sources of error; (ii) the largest fully-annotated and calibrated data set to date with more than 2 million frames of 1080 p, 60 fps video taken by 8 cameras observing more than 2,700 identities over 85 min; and (iii) a reference software system as a comparison baseline. We show that (i) our measures properly account for bottom-line identity match performance in the multi-camera setting; (ii) our data set poses realistic challenges to current trackers; and (iii) the performance of our system is comparable to the state of the art.
引用
收藏
页码:17 / 35
页数:19
相关论文
共 61 条
[1]  
[Anonymous], OVERVIEW PETS 2009 C
[2]  
[Anonymous], 2013, IEEE C COMP VIS PATT
[3]  
[Anonymous], 2015, ARXIV150401942
[4]  
[Anonymous], P IEEE C COMPUTER VI
[5]  
[Anonymous], FDN COMPUTER SCI
[6]  
[Anonymous], 2015, CVPR
[7]  
[Anonymous], 2004, P 2004 IEEE COMP SOC
[8]  
[Anonymous], 2008, NEM SUMMIT
[9]  
[Anonymous], ARXIV1150203532
[10]  
Ayazoglu M, 2011, IEEE I CONF COMP VIS, P2462, DOI 10.1109/ICCV.2011.6126531