Dehn filling in relatively hyperbolic groups

被引:136
作者
Groves, Daniel [1 ]
Manning, Jason Fox [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] SUNY Buffalo, Buffalo, NY 14260 USA
关键词
D O I
10.1007/s11856-008-1070-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a number of new tools for the study of relatively hyperbolic groups. First, given a relatively hyperbolic group G, we construct a nice combinatorial Gromov hyperbolic model space acted on properly by G, which reflects the relative hyperbolicity of G in many natural ways. Second, we construct two useful bicombings on this space. The first of these, preferred paths, is combinatorial in nature and allows us to define the second, a relatively hyperbolic version of a construction of Mineyev. As an application, we prove a group-theoretic analog of the Gromov-Thurston 2 pi Theorem in the context of relatively hyperbolic groups.
引用
收藏
页码:317 / 429
页数:113
相关论文
共 42 条
[1]   Bounds on exceptional Dehn filling [J].
Agol, Ian .
GEOMETRY & TOPOLOGY, 2000, 4 :431-449
[2]   A combination theorem for relatively hyperbolic groups [J].
Alibegovic, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :459-466
[3]   A homological characterization of hyperbolic groups [J].
Allcock, DJ ;
Gersten, SM .
INVENTIONES MATHEMATICAE, 1999, 135 (03) :723-742
[4]  
[Anonymous], 1979, PRINCETON LECT NOTES
[5]  
BOWDITCH B, RELATIVELY HYPERBOLI
[6]  
Bridson M. R., 1999, FUNDAMENTAL PRINCIPL, V319
[7]  
Bumagin I, 2005, CONTEMP MATH, V372, P189
[8]   A CHARACTERIZATION OF COCOMPACT HYPERBOLIC AND FINITE-VOLUME HYPERBOLIC GROUPS IN DIMENSION-3 [J].
CANNON, JW ;
COOPER, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) :419-431
[9]   Combination of convergence groups [J].
Dahmani, F .
GEOMETRY & TOPOLOGY, 2003, 7 :933-963
[10]   Classifying spaces and boundaries for relatively hyperbolic groups [J].
Dahmani, F .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :666-684