Frequency Modulation Approach for High Power Density 100 Hz Piezoelectric Vibration Energy Harvester

被引:2
作者
Ju, Dengfeng [1 ,2 ]
Wang, Lu [3 ,4 ,5 ]
Li, Chunlong [1 ,2 ]
Huang, Hui [1 ,2 ]
Liu, Hongjing [6 ,7 ]
Liu, Kewen [6 ,7 ]
Wang, Qian [3 ,4 ]
Han, Xiangguang [3 ,4 ,5 ]
Zhao, Libo [3 ,4 ,5 ]
Maeda, Ryutaro [3 ,4 ]
机构
[1] State Grid Smart Grid Res Inst Co Ltd, Beijing 102209, Peoples R China
[2] Elect Power Intelligent Sensing Technol & Applicat, Beijing 102209, Peoples R China
[3] Xi An Jiao Tong Univ, Yantai Res Inst Intelligent Sensing Technol & Syst, State Key Lab Mfg Syst Engn, Int Joint Lab Micro Nano Mfg & Measurement Technol, Xian 710049, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
[5] Shandong Lab Yantai Adv Mat & Green Mfg, Yantai 265503, Peoples R China
[6] State Grid Beijing Elect Power Res Inst, Beijing 100075, Peoples R China
[7] Stand Verificat Lab Onsite Testing Technol, Beijing 102209, Peoples R China
关键词
resonant frequency; vibration energy harvesting; frequency modulation; magnetic coupling;
D O I
10.3390/s22239493
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Piezoelectric vibration energy harvester (PVEH) is a promising device for sustainable power supply of wireless sensor nodes (WSNs). PVEH is resonant and generates power under constant frequency vibration excitation of mechanical equipment. However, it cannot output high power through off-resonance if it has frequency offset in manufacturing, assembly and use. To address this issue, this paper designs and optimizes a PVEH to harvest power specifically from grid transformer vibration at 100 Hz with high power density of 5.28 mu Wmm(-3)g(-2). Some resonant frequency modulation methods of PVEH are discussed by theoretical analysis and experiment, such as load impedance, additional mass, glue filling, axial and transverse magnetic force frequency modulation. Finally, efficient energy harvesting of 6.1 V output in 0.0226 g acceleration is tested in grid transformer reactor field application. This research has practical value for the design and optimization process of tunable PVEH for a specific vibration source.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Vacuum-Packaged Piezoelectric Energy Harvester for Powering Smart Grid Monitoring Devices [J].
Abasian, Alireza ;
Tabesh, Ahmadreza ;
Rezaei-Hosseinabadi, Nasrin ;
Nezhad, Abolghasem Zeidaabadi ;
Bongiorno, Massimo ;
Khajehoddin, Sayed Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (06) :4447-4456
[2]   Design Optimization of an Energy Harvesting Platform for Self-Powered Wireless Devices in Monitoring of AC Power Lines [J].
Abasian, Alireza ;
Tabesh, Ahmadreza ;
Nezhad, Abolghasem Zeidaabadi ;
Rezaei-Hosseinabadi, Nasrin .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (12) :10308-10316
[3]   Maximum power point of piezoelectric energy harvesters: a review of optimality condition for electrical tuning [J].
Brenes, A. ;
Morel, A. ;
Juillard, J. ;
Lefeuvre, E. ;
Badel, A. .
SMART MATERIALS AND STRUCTURES, 2020, 29 (03)
[4]   Study on cantilever piezoelectric energy harvester with tunable function [J].
Chen, Lihua ;
Xue, Jiangtao ;
Pan, Shiqing ;
Chang, Liqi .
SMART MATERIALS AND STRUCTURES, 2020, 29 (07)
[5]   Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system [J].
Elfrink, R. ;
Renaud, M. ;
Kamel, T. M. ;
de Nooijer, C. ;
Jambunathan, M. ;
Goedbloed, M. ;
Hohlfeld, D. ;
Matova, S. ;
Pop, V. ;
Caballero, L. ;
van Schaijk, R. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (10)
[6]   Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings [J].
Elvira-Hernandez, Ernesto A. ;
Uscanga-Gonzalez, Luis A. ;
de Leon, Arxel ;
Lopez-Huerta, Francisco ;
Herrera-May, Agustin L. .
MICROMACHINES, 2019, 10 (03)
[7]   High performance piezoelectric vibration energy harvesting by electrical resonant frequency tuning [J].
Gibus, David ;
Morel, Adrien ;
Gasnier, Pierre ;
Ameye, Adrien ;
Badel, Adrien .
SMART MATERIALS AND STRUCTURES, 2022, 31 (12)
[8]   Technology evolution from micro-scale energy harvesters to nanogenerators [J].
Guo, Xinge ;
Liu, Long ;
Zhang, Zixuan ;
Gao, Shan ;
He, Tianyiyi ;
Shi, Qiongfeng ;
Lee, Chengkuo .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (09)
[9]   A self-adaptive energy harvesting system [J].
Hoffmann, D. ;
Willmann, A. ;
Hehn, T. ;
Folkmer, B. ;
Manoli, Y. .
SMART MATERIALS AND STRUCTURES, 2016, 25 (03)
[10]   High power density energy harvester with non-uniform cantilever structure due to high average strain distribution [J].
Hu, Yili ;
Yi, Zhiran ;
Dong, Xiaoxue ;
Mou, Fangxiao ;
Tian, Yingwei ;
Yang, Qinghai ;
Yang, Bin ;
Liu, Jingquan .
ENERGY, 2019, 169 :294-304