Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition

被引:144
|
作者
Lin, Jixiang [1 ,2 ]
Wang, Yingnan [1 ]
Sun, Shengnan [3 ]
Mu, Chunsheng [2 ]
Yan, Xiufeng [1 ]
机构
[1] Northeast Forestry Univ, Key Lab Saline Alkali Vegetat Ecol Restorat Oil F, Minist Educ, Alkali Soil Nat Environm Sci Ctr, Harbin 150040, Peoples R China
[2] Northeast Normal Univ, Inst Grassland Sci, Key Lab Vegetat Ecol, Minist Educ, Changchun 130024, Peoples R China
[3] Yangzhou Univ, Coll Anim Sci & Technol, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen deposition; Salt-alkali stress; Arbuscular mycorrhizal; Leymus chinensis; Photosynthesis; TOLERANCE; SALINITY; PLANTS; WATER; CLIMATE; BALANCE; LIMITS; YIELD;
D O I
10.1016/j.scitotenv.2016.10.091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leymus chinensis is the most promising grass species for salt-alkaline grassland restoration in northern China. However, little information exists concerning the role of arbuscular mycorrhizal (AM) symbiosis in the adaptation of seedlings to salt-alkali stress, particularly under increased nitrogen deposition, which has become a major environmental problem throughout the world. In this study, Leymus chinensis seedlings were cultivated in soil with 0, 100 and 200 mM NaCl/NaHCO3 under two forms of nitrogen (10 mM NH4NO3 or NH4Cl: NH4NO3 = 3:1), and the root colonization, growth and photosynthetic characteristics of the seedlings were measured. The results showed that the colonization rate and intensity decreased with increasing salt-alkali stress and were much lower under alkali stress. The nitrogen treatments also decreased the colonization, particularly under the NH4+-N treatment. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally presented higher plant biomass, photosynthetic parameters and contents of photosynthetic pigments under stresses, and the inhibitive effects of alkali stress were substantially stronger. In addition, both nitrogen forms decreased the physiological indexes compared with those of the AM seedlings. Our results suggest that salt stress and alkali stress are significantly different and that the salt-alkali tolerance of Leymus chinensis seedlings could be enhanced by associations with arbuscular mycorrhizal fungi, in which would yield better plant growth and photosynthesis. Excessive nitrogen in the soil affects mycorrhizal colonization and thereby inhibits the growth and photosynthetic ability of the seedlings. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 50 条
  • [1] Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance
    Lin, Jixiang
    Peng, Xiaoyuan
    Hua, Xiaoyu
    Sun, Shengnan
    Wang, Yingnan
    Yan, Xiufeng
    RSC ADVANCES, 2018, 8 (26): : 14500 - 14509
  • [2] Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses
    Wang, Yingnan
    Lin, Jixiang
    Yang, Fan
    Tao, Shuang
    Yan, Xiufeng
    Zhou, Zhiqiang
    Zhang, Yuhong
    PEERJ, 2022, 10
  • [3] Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress
    Xu, Hongwen
    Lu, Yan
    Tong, Shuyuan
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2018, 30 (03): : 199 - 204
  • [4] Arbuscular Mycorrhizal Fungi Alleviates Salt-Alkali Stress Demage on Syneilesis aconitifolia
    Fang, Linlin
    Xu, Jiamei
    Yang, Chunxue
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (12) : 3195 - 3209
  • [5] Arbuscular Mycorrhizal Fungi Alleviates Salt-Alkali Stress Demage on Syneilesis aconitifolia
    Fang, Linlin
    Xu, Jiamei
    Yang, Chunxue
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023,
  • [6] Effects of exogenous brassinolide and AM fungi on growth, photosynthetic characteristics and antioxidant enzyme system of Leymus chinensis under salt and alkali stress
    Gao, Zhanwu
    Liu, Jing
    Li, Qian
    Liu, Jinyu
    Bai, Mengyuan
    Li, Xinning
    Zhu, Qiang
    Cui, Yanhui
    Rasheed, Adnan
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2023, 51 (04)
  • [7] Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress
    Wu, Qiang-Sheng
    Zou, Ying-Ning
    He, Xin-Hua
    ACTA PHYSIOLOGIAE PLANTARUM, 2010, 32 (02) : 297 - 304
  • [8] Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress
    Wang, Yanhong
    Wang, Minqiang
    Li, Yan
    Wu, Aiping
    Huang, Juying
    PLOS ONE, 2018, 13 (04):
  • [9] Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress
    Qiang-Sheng Wu
    Ying-Ning Zou
    Xin-Hua He
    Acta Physiologiae Plantarum, 2010, 32 : 297 - 304
  • [10] Effects of Arbuscular Mycorrhizal Fungi on Growth, Photosynthesis, and Nutrient Uptake of Zelkova serrata (Thunb.) Makino Seedlings under Salt Stress
    Wang, Jinping
    Fu, Zhiyuan
    Ren, Qiong
    Zhu, Lingjun
    Lin, Jie
    Zhang, Jinchi
    Cheng, Xuefei
    Ma, Jieyi
    Yue, Jianmin
    FORESTS, 2019, 10 (02):