Fixed Point Theorems for a Demicontractive Mapping and Equilibrium Problems in Hilbert Spaces

被引:1
作者
Khuangsatung, Wongvisarut [1 ]
Suwannaut, Sarawut [2 ]
机构
[1] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Dept Math & Comp Sci, Pathum Thani 12110, Thailand
[2] Lampang Rajabhat Univ, Fac Sci, Dept Math, Lampang 50100, Thailand
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2020年 / 11卷 / 02期
关键词
The combination of equilibrium problem; Fixed point; Demicontractive mapping; CONVERGENCE;
D O I
10.26713/cma.v11i2.1237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research, we introduce some properties of demicontractive mapping and the combination of equilibrium problem. Then, we prove a strong convergence for the iterative sequence converging to a common element of fixed point set of demicontractive mapping and a common solution of equilibrium problems. Finally, we give a numerical example for the main theorem to support our results.
引用
收藏
页码:181 / 198
页数:18
相关论文
共 17 条
[1]  
Blum E., 1994, MATH STUDENT, V63, P123
[2]   A hybrid iterative method for a combination of equilibria problem, a combination of variational inequality problems and a hierarchical fixed point problem [J].
Bnouhachem, Abdellah .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[3]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[4]   Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space [J].
Iemoto, Shigeru ;
Takahashi, Wataru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E2082-E2089
[6]   Convergence theorem of κ-strictly pseudo-contractive mapping and a modifA±cation of generalized equilibrium problems [J].
Kangtunyakarn, Atid .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[7]   Algorithm of a new variational inclusion problem and strictly pseudononspreading mapping with application [J].
Khuangsatung, Wongvisarut ;
Kangtunyakarn, Atid .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[8]   Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces [J].
Kohsaka, Fumiaki ;
Takahashi, Wataru .
ARCHIV DER MATHEMATIK, 2008, 91 (02) :166-177
[9]   SOLUTION BY ITERATION OF NONLINEAR EQUATIONS IN HILBERT SPACES [J].
MARUSTER, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (01) :69-73
[10]  
Maruster St, 2015, APPL MATH SCI, V9, P2061