Feature extraction from photographical images using a hybrid neural network

被引:5
作者
Becanovic, V [1 ]
Kermit, M [1 ]
Eide, ÅJ [1 ]
机构
[1] KTH, Dept Phys, SE-10405 Stockholm, Sweden
来源
NINTH WORKSHOP ON VIRTUAL INTELLIGENCE/DYNAMIC NEURAL NETWORKS: ACADEMIC/INDUSTRIAL/NASA/DEFENSE TECHNICAL INTERCHANGE AND TUTORIALS | 1999年 / 3728卷
关键词
object recognition; saccadic eye movement; foveation; neural network; PCNN; SOM; license plate recognition; probability surface; segmentation; time-series;
D O I
10.1117/12.343053
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A new method for extracting features from photographic images has been developed. The input image is through a pulse coupled neural network (PCNN) transformed to a set of signatures, well suited for classification by unsupervised neural networks. A strategy using multiple self-organising feature maps (SORI) in a hierarchical manner is developed. With this approach, using a certain degree of supervision, an acceptable classification is obtained when applied to test images. The method is applied to license plate recognition.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 19 条
[1]  
[Anonymous], 1998, IMAGE PROCESSING USI
[2]  
BONMASSAR G, 1994, ICPR P, V12, P204
[3]   The local structure of space-variant images [J].
Fischl, B ;
Cohen, MA ;
Schwartz, EL .
NEURAL NETWORKS, 1997, 10 (05) :815-831
[4]  
Ganong WF., 1985, REV MED PHYSL, V12th
[5]   PARALLEL AND DETERMINISTIC ALGORITHMS FROM MRFS - SURFACE RECONSTRUCTION [J].
GEIGER, D ;
GIROSI, F .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (05) :401-412
[6]  
GERNAN S, 1984, T IEEE PATTERN ANAL, V6, P721
[7]  
Gonzales R.C., 1992, DIGITAL IMAGE PROCES
[8]  
Hall D. L., 1992, MATH TECHNIQUES MULT
[9]  
Haykin S., 1994, NEURAL NETWORKS COMP
[10]  
HORN D, 1997, NEURAL COMPUTATI NOV, V9