Buchsbaum* complexes

被引:5
作者
Athanasiadis, Christos A. [1 ]
Welker, Volkmar [2 ]
机构
[1] Univ Athens, Dept Math, Div Algebra Geometry, Athens 15784, Greece
[2] Univ Marburg, Fachbereich Math & Informat, D-35032 Marburg, Germany
关键词
RIGIDITY;
D O I
10.1007/s00209-011-0926-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class of finite simplicial complexes, which we call Buchsbaum* over a field, is introduced. Buchsbaum* complexes generalize triangulations of orientable homology manifolds as well as doubly Cohen-Macaulay complexes. By definition, the Buchsbaum* property depends only on the geometric realization and the field. Characterizations in terms of simplicial homology are given. It is proved that Buchsbaum* complexes are doubly Buchsbaum. Various constructions, among them one which generalizes convex ear decompositions, are shown to yield Buchsbaum* simplicial complexes. Graph theoretic and enumerative properties of Buchsbaum* complexes are investigated.
引用
收藏
页码:131 / 149
页数:19
相关论文
共 25 条
[1]  
[Anonymous], 1995, Handbook of combinatorics
[2]   Some combinatorial properties of flag simplicial pseudomanifolds and spheres [J].
Athanasiadis, Christos A. .
ARKIV FOR MATEMATIK, 2011, 49 (01) :17-29
[3]  
BACLAWSKI K., 1982, European J. Combin., V3, P293, DOI [10.1016/S0195-6698(82)80014-0, DOI 10.1016/S0195-6698(82)80014-0]
[4]  
BJORNER A, 1990, MATH SCAND, V67, P193
[5]  
BJORNER A, MIXED CONNECTI UNPUB
[6]   Lower bounds for Buchsbaum* complexes [J].
Browder, Jonathan ;
Klee, Steven .
EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (01) :146-153
[7]  
Bruns W., 1998, CAMBRIDGE STUDIES AD, V39
[9]  
Floystad G, 2006, CONTEMP MATH, V423, P205
[10]   THE CANONICAL MODULE OF A STANLEY-REISNER RING [J].
GRABE, HG .
JOURNAL OF ALGEBRA, 1984, 86 (01) :272-281