Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

被引:9
作者
Xiao, Mingyu [1 ]
Kou, Shaowei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Sichuan, Peoples R China
来源
THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017) | 2017年 / 10185卷
基金
中国国家自然科学基金;
关键词
DISSOCIATION NUMBER; PATH COVER; COMPLEXITY; GRAPH; SET;
D O I
10.1007/978-3-319-55911-7_47
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A 3-path vertex cover in a graph is a vertex subset C such that every path of three vertices contains at least one vertex from C. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most k. In this paper, we give a kernel of 5 k vertices and an O*(1.7485(k))-time algorithm for this problem, both new results improve previous known bounds.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 29 条
[1]  
Abu-Khzam Faisal N., 2004, P 6 WORKSHOP ALGORIT, P62
[2]   NP-hard graph problems and boundary classes of graphs [J].
Alekseev, V. E. ;
Boliac, R. ;
Korobitsyn, D. V. ;
Lozin, V. V. .
THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) :219-236
[3]   An optimal parallel solution for the path cover problem on P4-sparse graphs [J].
Asdre, Katerina ;
Nikolopoulos, Stavros D. ;
Papadopoulos, Charis .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2007, 67 (01) :63-76
[4]  
Boliac R, 2004, ARS COMBINATORIA, V72, P241
[5]   On the vertex k-path cover [J].
Bresar, Bostjan ;
Jakovac, Marko ;
Katrenic, Jan ;
Semanisin, Gabriel ;
Taranenko, Andrej .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :1943-1949
[6]   Minimum k-path vertex cover [J].
Bresar, Bostjan ;
Kardos, Frantisek ;
Katrenic, Jan ;
Semanisin, Gabriel .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) :1189-1195
[7]   Independent packings in structured graphs [J].
Cameron, K ;
Hell, P .
MATHEMATICAL PROGRAMMING, 2006, 105 (2-3) :201-213
[8]  
Chang M-S., 2014, 31 WORKSHOP COMBINAT, P9
[9]   Fixed-parameter algorithms for vertex cover P3 [J].
Chang, Maw-Shang ;
Chen, Li-Hsuan ;
Hung, Ling-Ju ;
Rossmanith, Peter ;
Su, Ping-Chen .
DISCRETE OPTIMIZATION, 2016, 19 :12-22
[10]   A generalization of Nemhauser and Trotter's local optimization theorem [J].
Fellows, Michael R. ;
Guo, Jiong ;
Moser, Hannes ;
Niedermeier, Rolf .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) :1141-1158