ON THE CRITICAL NUMBER OF FINITE GROUPS OF ORDER pq

被引:4
作者
Wang, Q. H. [1 ]
Zhuang, J. J. [2 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
[2] Dalian Maritime Univ, Dept Math, Dalian 116026, Peoples R China
基金
美国国家科学基金会;
关键词
Critical number; subset; additive basis; finite groups; ABELIAN-GROUPS; SUMS;
D O I
10.1142/S1793042112500741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and S be a subset of G\{0}. We call S an additive basis of G if every element of G can be expressed as a sum over a non-empty subset in some order. Let cr(G) be the smallest integer t such that every subset of G\{0} of cardinality t forms an additive basis of G. In this paper, we determine cr(G) for all groups G of order pq, where p, q are primes.
引用
收藏
页码:1271 / 1279
页数:9
相关论文
共 12 条
[1]   The polynomial method and restricted sums of congruence classes [J].
Alon, N ;
Nathanson, MB ;
Ruzsa, I .
JOURNAL OF NUMBER THEORY, 1996, 56 (02) :404-417
[2]   CYCLIC SPACES FOR GRASSMANN DERIVATIVES AND ADDITIVE THEORY [J].
DASILVA, JAD ;
HAMIDOUNE, YO .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :140-146
[3]  
Diderrich G. T., 1973, A Survey of Combinatorial Theory, P95
[4]   ADDITION THEOREM FOR ABELIAN-GROUPS OF ORDER PQ [J].
DIDERRICH, GT .
JOURNAL OF NUMBER THEORY, 1975, 7 (01) :33-48
[5]  
Erdos P., 1964, Acta Arith., V9, P149
[6]   The critical number of finite abelian groups [J].
Freeze, Michael ;
Gao, Weidong ;
Geroldinger, Alfred .
JOURNAL OF NUMBER THEORY, 2009, 129 (11) :2766-2777
[7]  
Gao W, 1999, ACTA ARITH, V88, P233
[8]  
Gao W., 1995, Acta Math. Sinica, V38, P395
[9]   Spanning subset sums for finite Abelian groups [J].
Griggs, JR .
DISCRETE MATHEMATICS, 2001, 229 (1-3) :89-99
[10]  
Hungerford T., 1980, ALGEBRA