A note on analyzing nonlinear and nonstationary ocean wave data.

被引:83
|
作者
Hwang, PA [1 ]
Huang, NE
Wang, DW
机构
[1] USN, Res Lab, Div Oceanog, Stennis Space Ctr, MS 39529 USA
[2] NASA, Goddard Space Flight Ctr, Earth Sci Branch, Greenbelt, MD 20770 USA
关键词
nlinear; nonstationary; Huang-Hilbert transformation; empirical mode decomposition; FFT; wavelet; frequency modulation; wave spectrum;
D O I
10.1016/j.apor.2003.11.001
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Huang-Hilbert transformation (HHT, composed of empirical mode decomposition and Hilbert transformation) can be applied to calculate the spectrum of nonlinear and nonstationary signals. The superior temporal and frequency resolutions of the HHT spectrum are illustrated by several examples in this article. The HHT analysis interprets wave nonlinearity in terms of frequency modulation instead of harmonic generation. The resulting spectrum contains much higher spectral energy at low frequency and sharper drop off at high frequency in comparison with the spectra derived from Fourier-based analysis methods (e.g. FFT and wavelet techniques). For wind generated waves, the spectral level of the Fourier spectrum is about two orders of magnitude smaller than that of the HHT spectrum at the first subharmonic of the peak frequency. The resulting average frequency as defined by the normalized first momentum of the spectrum is about 1.2 times higher in the Fourier-based spectra than that of the HHT spectrum. Published by Elsevier Ltd.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [1] ANALYSIS OF MARSEN X BAND SAR OCEAN WAVE DATA.
    Shuchman, R.A.
    Rosenthal, W.
    Lyden, J.D.
    Lyzenga, D.R.
    Kasischke, E.S.
    Gunther, H.
    Linne, H.
    Journal of Geophysical Research, 1983, 88 (C14): : 9757 - 9768
  • [2] APPLICATION OF NONLINEAR MIXED MODELS WITH HARMONIC TERMS FOR ANALYZING LONGITUDINAL DATA.
    Schliep, K.
    Mumford, S.
    Albert, P.
    Yeung, E.
    Ye, A.
    Schisterman, E.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S181 - S181
  • [3] Analyzing longitudinal orthodontic data. Part 2: Nonlinear growth models
    Tu, Yu-Kang
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2013, 144 (04) : 628 - 631
  • [4] Analyzing and modeling rank data.
    Leach, C
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1998, 51 : 182 - 183
  • [5] Analyzing longitudinal orthodontic data. Part 3: Multilevel nonlinear growth models
    Tu, Yu-Kang
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2013, 144 (05) : 779 - 782
  • [6] NEW-ZEALAND OCEAN WAVE DATA INVENTORY (NOTE)
    STANTON, BR
    NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 1992, 26 (02) : 175 - 178
  • [7] A difference plot for analyzing method comparison data.
    Duh, SH
    CLINICAL CHEMISTRY, 1998, 44 : A64 - A64
  • [8] Nonstationary adaptive S-wave leakage suppression of ocean-bottom node data
    Chen, Zhihao
    Zhu, Zhaolin
    Wu, Bangyu
    Chen, Yangkang
    GEOPHYSICS, 2024, 89 (06) : V605 - V618
  • [9] Modelling and analyzing spatial-temporal environmental data.
    El-Shaarawi, AH
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03): : 476 - 476
  • [10] Methods of Analyzing Nonstationary Variability of the Black Sea Wave Climate
    Saprykina, Ya. V.
    Kuznetsov, S. Yu.
    PHYSICAL OCEANOGRAPHY, 2018, 25 (04): : 317 - 329