Clustering Barotrauma Patients in ICU-A Data Mining Based Approach Using Ventilator Variables

被引:1
作者
Oliveira, Sergio [1 ]
Portela, Filipe [1 ]
Santos, Manuel F. [1 ]
Machado, Jose [1 ]
Abelha, Antonio [1 ]
Silva, Alvaro [1 ]
Rua, Fernando [1 ]
机构
[1] Univ Minho, Algoritmi Ctr, Braga, Portugal
来源
PROGRESS IN ARTIFICIAL INTELLIGENCE-BK | 2015年 / 9273卷
关键词
Barotrauma; Plateau pressure; Intensive medicine; Data mining; Clustering; Similarity; Correlation;
D O I
10.1007/978-3-319-23485-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting barotrauma occurrence in intensive care patients is a difficult task. Data Mining modelling can contribute significantly to the identification of patients who will suffer barotrauma. This can be achieved by grouping patient data, considering a set of variables collected from ventilators directly related with barotrauma, and identifying similarities among them. For clustering have been considered k-means and k-medoids algortihms (Partitioning Around Medoids). The best model induced presented a Davies-Bouldin Index of 0.64. This model identifies the variables that have more similarity among the variables monitored by the ventilators and the occurrence of barotrauma.
引用
收藏
页码:122 / 127
页数:6
相关论文
共 10 条
[1]   Expiratory time constant for determinations of plateau pressure, respiratory system compliance, and total resistance [J].
Al-Rawas, Nawar ;
Banner, Michael J. ;
Euliano, Neil R. ;
Tams, Carl G. ;
Brown, Jeff ;
Martin, A. Daniel ;
Gabrielli, Andrea .
CRITICAL CARE, 2013, 17 (01)
[2]  
Anderson R.K., 2012, Visual Data Mining: The VisMiner Approach
[3]   Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients [J].
Anzueto, A ;
Frutos-Vivar, F ;
Esteban, A ;
Alía, I ;
Brochard, L ;
Stewart, T ;
Benito, S ;
Tobin, MJ ;
Elizalde, J ;
Palizas, F ;
David, CM ;
Pimentel, J ;
González, M ;
Soto, L ;
D'Empaire, G ;
Pelosi, P .
INTENSIVE CARE MEDICINE, 2004, 30 (04) :612-619
[4]   Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome [J].
Boussarsar, M ;
Thierry, G ;
Jaber, S ;
Roudot-Thoraval, F ;
Lemaire, F ;
Brochard, L .
INTENSIVE CARE MEDICINE, 2002, 28 (04) :406-413
[5]  
Han J, 2012, MOR KAUF D, P1
[6]  
Koh Hian Chye, 2005, J Healthc Inf Manag, V19, P64
[7]   Predicting Plateau Pressure in Intensive Medicine for Ventilated Patients [J].
Oliveira, Sergio ;
Portela, Filipe ;
Santos, Manuel Filipe ;
Machado, Jose ;
Abelha, Antonio ;
Silva, Alvaro ;
Rua, Fernando .
NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, 2015, 354 :179-188
[8]  
Portela Filipe, 2014, Information Technology in Bio- and Medical Informatics. 5th International Conference (ITBAM 2014). Proceedings: LNCS 8649, P87, DOI 10.1007/978-3-319-10265-8_9
[9]  
Turban E., 2011, Decision support and business intelligence systems
[10]  
Xindong Wu., 2009, Top Ten Algorithms in Data Mining