Special Features of Oxide Layer Formation on Magnesium Alloys during Plasma Electrolytic Oxidation

被引:1
作者
Kossenko, A. [1 ]
Zinigrad, M. [1 ]
机构
[1] Ariel Univ, Sci Pk, IL-40700 Ariel, Israel
关键词
plasma electrolytic oxidation; surface treatment; magnesium; islands mechanism; anomalous voltage form; MICRO-ARC OXIDATION; CORROSION BEHAVIOR; MG ALLOY; CONTAINING COATINGS; ALUMINUM-ALLOYS; HIGH EMISSIVITY; PEO COATINGS; DUTY CYCLE; AZ31; RESISTANCE;
D O I
10.1134/S1087659618020098
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The process of the oxidation of magnesium alloys in a silicate electrolyte during plasma electrolytic oxidation is investigated. An anomalous form of the chronogram of the formation voltage of the oxide layer in the electrolytes with the highest silicate concentration (approximately 0.15 M Na2SiO3 center dot 5H(2)O) is detected. X-ray diffraction analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy analysis, and thickness gauges are used to characterize the surface microstructure, phase composition, and thickness, respectively. Mechanisms for the initial period of PEO and the "insular" growth were described. During the "insular" growth, islands consisting of vitrified components of the electrolyte are growing on the original smooth surface.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 50 条
  • [21] Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation
    Wang, Kai
    Koo, Bon-Heun
    Lee, Chan-Gyu
    Kim, Young-Joo
    Lee, Sung-Hun
    Byon, Eungsun
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (04) : 866 - 870
  • [22] Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy
    Arrabal, R.
    Mota, J. M.
    Criado, A.
    Pardo, A.
    Mohedano, M.
    Matykina, E.
    SURFACE & COATINGS TECHNOLOGY, 2012, 206 (22) : 4692 - 4703
  • [23] Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation
    Sieber, Maximilian
    Simchen, Frank
    Scharf, Ingolf
    Lampke, Thomas
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (03) : 1157 - 1162
  • [24] Effects of beta phase on the growth behavior of plasma electrolytic oxidation coating formed on magnesium alloys
    Liu, Cancan
    Xu, Tong
    Shao, Qingying
    Huang, Shuo
    Jiang, Bailing
    Liang, Jun
    Li, Hongtao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 784 : 414 - 421
  • [25] Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation
    Yerokhin, AL
    Leyland, A
    Matthews, A
    APPLIED SURFACE SCIENCE, 2002, 200 (1-4) : 172 - 184
  • [26] Plasma electrolytic oxidation as a method for protection against corrosion of magnesium and its alloys
    Florczaka, Lukasz
    Nawrat, Ginter
    Kwolek, Przemystaw
    Sieniawski, Jan
    Sobkowiak, Andrzej
    PRZEMYSL CHEMICZNY, 2018, 97 (12): : 2145 - 2153
  • [27] Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation
    Yagi, Shunsuke
    Kuwabara, Kosuke
    Fukuta, Yuko
    Kubota, Kohei
    Matsubara, Eiichiro
    CORROSION SCIENCE, 2013, 73 : 188 - 195
  • [28] The effects of processing parameters on the formation of oxide layers in aluminium alloys using plasma electrolytic oxidation technique
    Jadhav, Priya
    Bongale, Arunkumar
    Kumar, Satish
    JOURNAL OF THE MECHANICAL BEHAVIOR OF MATERIALS, 2021, 30 (01) : 118 - 129
  • [29] Protective composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8
    Gnedenkov, S. V.
    Sinebryukhov, S. L.
    Mashtalyar, D. V.
    Imshinetskiy, I. M.
    Gnedenkov, A. S.
    Samokhin, A. V.
    Tsvetkov, Y. V.
    VACUUM, 2015, 120 : 107 - 114
  • [30] Specification of parasitic electrochemical subprocesses during plasma electrolytic oxidation of magnesium
    Simchen, F.
    Schwoebel, S. D.
    Mehner, T.
    Lampke, T.
    ELECTROCHIMICA ACTA, 2023, 464