Error bounds for linear complementarity problems of S-Nekrasov matrices and B-S-Nekrasov matrices

被引:20
作者
Gao, Lei [1 ]
Wang, Yaqiang [1 ]
Li, Chaoqian [2 ]
Li, Yaotang [2 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
关键词
Linear complementarity problems; Error bounds; S-Nekrasov matrices; B-S-Nekrasov matrices; H-MATRICES;
D O I
10.1016/j.cam.2017.12.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An error bound involving a parameter, which does not always work, for the linear complementarity problem (LCP) when the involved matrices are S-Nekrasov matrices is provided by M. Garcia-Esnaola and J.M. Pella (2014). In this paper, a new error bound for the LCP of S-Nekrasov matrices is presented, which depends only on the entries of the involved S-Nekrasov matrices. Based on the obtained results, we also give an error bound for the LCP of B-S-Nekrasov matrices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 27 条
[1]  
[Anonymous], 1988, Linear Complementarity, Linear and Nonlinear Programming
[2]  
[Anonymous], 1994, NONNEGATIVE MATRIX M
[3]   Error bounds for linear complementarity problems of MB-matrices [J].
Chen, Tingting ;
Li, Wen ;
Wu, Xianping ;
Vong, Seakweng .
NUMERICAL ALGORITHMS, 2015, 70 (02) :341-356
[4]   PERTURBATION BOUNDS OF P-MATRIX LINEAR COMPLEMENTARITY PROBLEMS [J].
Chen, Xiaojun ;
Xiang, Shuhuang .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1250-1265
[5]   Computation of error bounds for P-matrix linear complementarity problems [J].
Chen, XJ ;
Xiang, SH .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :513-525
[6]  
Cottle R.W., 1992, The Linear Complementarity Problem
[7]   A new subclass of H-matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Rauski, Sonja .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) :206-210
[8]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54
[9]   A general preconditioner for linear complementarity problem with an M-matrix [J].
Dai, Ping-Fan ;
Li, Ji-Cheng ;
Li, Yao-Tang ;
Bai, Jianchao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :100-112
[10]   New error bounds for the linear complementarity problem with an SB-matrix [J].
Dai, Ping-Fan ;
Lu, Chang-Jing ;
Li, Yao-Tang .
NUMERICAL ALGORITHMS, 2013, 64 (04) :741-757