Improving genetic prediction by leveraging genetic correlations among human diseases and traits

被引:97
作者
Maier, Robert M. [1 ,2 ,3 ,4 ]
Zhu, Zhihong [5 ]
Lee, Sang Hong [1 ,6 ,7 ]
Trzaskowski, Maciej [5 ]
Ruderfer, Douglas M. [8 ]
Stahl, Eli A. [9 ]
Ripke, Stephan [10 ]
Wray, Naomi R. [1 ,5 ]
Yang, Jian [1 ,5 ]
Visscher, Peter M. [1 ,2 ,5 ]
Robinson, Matthew R. [5 ,11 ,12 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[2] Broad Inst, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[3] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USA
[4] Harvard Med Sch, Boston, MA 02114 USA
[5] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[6] Univ South Australia, Sch Hlth Sci, Ctr Populat Hlth Res, Adelaide, SA 5000, Australia
[7] Univ South Australia, Sansom Inst Hlth Res, Adelaide, SA 5000, Australia
[8] Vanderbilt Univ, Med Ctr, Dept Med Psychiat & Biomed Informat, Vanderbilt Genet Inst,Div Genet Med, Nashville, TN 37235 USA
[9] Icahn Sch Med Mt Sinai, Inst Genom & Multiscale Biol, New York, NY 10029 USA
[10] Charite, Dept Psychiat & Psychotherapy, Campus Mitte, D-10117 Berlin, Germany
[11] Univ Lausanne, Dept Computat Biol, CH-1015 Lausanne, Switzerland
[12] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
RISK PREDICTION; INCREASES ACCURACY; SCHIZOPHRENIA; PITFALLS; VALUES;
D O I
10.1038/s41467-017-02769-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait.
引用
收藏
页数:17
相关论文
共 45 条
  • [1] Genomic risk prediction of complex human disease and its clinical application
    Abraham, Gad
    Inouye, Michael
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2015, 33 : 10 - 16
  • [2] [Anonymous], 1973, J ANIM SCI, DOI DOI 10.1093/ANSCI/1973.SYMPOSIUM.10
  • [3] Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort
    Banda, Yambazi
    Kvale, Mark N.
    Hoffmann, Thomas J.
    Hesselson, Stephanie E.
    Ranatunga, Dilrini
    Tang, Hua
    Sabatti, Chiara
    Croen, Lisa A.
    Dispensa, Brad P.
    Henderson, Mary
    Iribarren, Carlos
    Jorgenson, Eric
    Kushi, Lawrence H.
    Ludwig, Dana
    Olberg, Diane
    Quesenberry, Charles P., Jr.
    Rowell, Sarah
    Sadler, Marianne
    Sakoda, Lori C.
    Sciortino, Stanley
    Shen, Ling
    Smethurst, David
    Somkin, Carol P.
    Van Den Eeden, Stephen K.
    Walter, Lawrence
    Whitmer, Rachel A.
    Kwok, Pui-Yan
    Schaefer, Catherine
    Risch, Neil
    [J]. GENETICS, 2015, 200 (04) : 1285 - +
  • [4] An atlas of genetic correlations across human diseases and traits
    Bulik-Sullivan, Brendan
    Finucane, Hilary K.
    Anttila, Verneri
    Gusev, Alexander
    Day, Felix R.
    Loh, Po-Ru
    Duncan, Laramie
    Perry, John R. B.
    Patterson, Nick
    Robinson, Elise B.
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (11) : 1236 - +
  • [5] LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
    Bulik-Sullivan, Brendan K.
    Loh, Po-Ru
    Finucane, Hilary K.
    Ripke, Stephan
    Yang, Jian
    Patterson, Nick
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (03) : 291 - +
  • [6] Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application
    Cantor, Rita M.
    Lange, Kenneth
    Sinsheimer, Janet S.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (01) : 6 - 22
  • [7] Developing and evaluating polygenic risk prediction models for stratified disease prevention
    Chatterjee, Nilanjan
    Shi, Jianxin
    Garcia-Closas, Montserrat
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (07) : 392 - 406
  • [8] Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach
    Daetwyler, Hans D.
    Villanueva, Beatriz
    Woolliams, John A.
    [J]. PLOS ONE, 2008, 3 (10):
  • [9] Predicting genetic predisposition in humans: the promise of whole-genome markers
    de los Campos, Gustavo
    Gianola, Daniel
    Allison, David B.
    [J]. NATURE REVIEWS GENETICS, 2010, 11 (12) : 880 - 886
  • [10] Power and Predictive Accuracy of Polygenic Risk Scores
    Dudbridge, Frank
    [J]. PLOS GENETICS, 2013, 9 (03):