A Superpixel-Guided Unsupervised Fast Semantic Segmentation Method of Remote Sensing Images

被引:9
|
作者
Chen, Guanzhou [1 ]
He, Chanjuan [1 ]
Wang, Tong [1 ]
Zhu, Kun [1 ]
Liao, Puyun [1 ]
Zhang, Xiaodong [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Deep learning (DL); fully convolutional networks (FCNs); remote sensing; semantic segmentation; superpixel; unsupervised learning;
D O I
10.1109/LGRS.2022.3198065
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation is one of the fundamental tasks of pixel-level remote sensing image analysis. Currently, most high-performance semantic segmentation methods are trained in a supervised learning manner. These methods require a large number of image labels as support, but manual annotations are difficult to obtain. To address the problem, we propose an efficient unsupervised remote sensing image segmentation method based on superpixel segmentation and fully convolutional networks (FCNs) in this letter. Our method can achieve pixel-level images segmentation of various scales rapidly without any manual labels or prior knowledge. We use the superpixel segmentation results as synthetic ground truth to guide the gradient descent direction during FCN training. In experiments, our method achieved high performance compared with current unsupervised image segmentation methods on three public datasets. Specifically, our method achieves an adjusted mutual information (AMI) score of 0.2955 on the Gaofen Image Dataset (GID), while processing each image of size 7200 x 6800 pixels in just 30 s.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An Enhanced and Unsupervised Siamese Network With Superpixel-Guided Learning for Change Detection in Heterogeneous Remote Sensing Images
    Ji, Zhiyuan
    Wang, Xueqian
    Wang, Zhihao
    Li, Gang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19451 - 19466
  • [2] A Fast and Effective Method for Unsupervised Segmentation Evaluation of Remote Sensing Images
    Zhao, Maofan
    Meng, Qingyan
    Zhang, Linlin
    Hu, Die
    Zhang, Ying
    Allam, Mona
    REMOTE SENSING, 2020, 12 (18)
  • [3] Superpixel Consistency Saliency Map Generation for Weakly Supervised Semantic Segmentation of Remote Sensing Images
    Zeng, Xiaopeng
    Wang, Tengfei
    Dong, Zhe
    Zhang, Xiangrong
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] MDANet: Unsupervised, Mixed-Domain Adaptation for Semantic Segmentation of Remote Sensing Images
    Cui, Hao
    Zhang, Guo
    Qi, Ji
    Li, Haifeng
    Tao, Chao
    Li, Xue
    Hou, Shasha
    Li, Deren
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Superpixel-Guided Layer-Wise Embedding CNN for Remote Sensing Image Classification
    Liu, Han
    Li, Jun
    He, Lin
    Wang, Yu
    REMOTE SENSING, 2019, 11 (02)
  • [6] BiFDANet: Unsupervised Bidirectional Domain Adaptation for Semantic Segmentation of Remote Sensing Images
    Cai, Yuxiang
    Yang, Yingchun
    Zheng, Qiyi
    Shen, Zhengwei
    Shang, Yongheng
    Yin, Jianwei
    Shi, Zhongtian
    REMOTE SENSING, 2022, 14 (01)
  • [7] Unsupervised Domain Adaptation Semantic Segmentation of Remote Sensing Images With Mask Enhancement and Balanced Sampling
    Li, Xin
    Qiu, Yuanbo
    Liao, Jixiu
    Meng, Fan
    Ren, Peng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] UGCNet: An Unsupervised Semantic Segmentation Network Embedded With Geometry Consistency for Remote-Sensing Images
    Zhao, Danpei
    Yuan, Bo
    Gao, Yue
    Qi, Xinhu
    Shi, Zhenwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] A Fine-Grained Unsupervised Domain Adaptation Framework for Semantic Segmentation of Remote Sensing Images
    Wang, Luhan
    Xiao, Pengfeng
    Zhang, Xueliang
    Chen, Xinyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4109 - 4121
  • [10] Unsupervised Domain Adaptation Semantic Segmentation for Remote-Sensing Images via Covariance Attention
    Liu, Yikun
    Kang, Xudong
    Huang, Yuwen
    Wang, Kuikui
    Yang, Gongping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19