Fractional double-phase patterns: concentration and multiplicity of solutions

被引:74
作者
Ambrosio, Vincenzo [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 142卷
关键词
Fractional p&q Laplacian problem; Double phase energy; Penalization technique; Nehari manifold; Ljusternik-Schnirelmann theory; Q LAPLACIAN PROBLEMS; Q ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; HOLDER REGULARITY; SUPERLINEAR (P; R-N; EXISTENCE; BEHAVIOR; GROWTH;
D O I
10.1016/j.matpur.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of fractional problems with unbalanced growth: {(-Delta)(p)(s)u + (-Delta)(q)(s)u + V(epsilon x) (vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u) = f(u) in RN, u is an element of W-s,W-p (R-N) boolean AND W-s,W-q (R-N), u < 0 in R-N, where epsilon > 0 is a small parameter, s is an element of (0,1), 2 <= p < q < N/s, (-Delta)(t)(s) (with t is an element of {p,q}) is the fractional t-Laplacian operator, V : R-N -> R is a continuous potential satisfying local conditions, and f : R -> R is a continuous nonlinearity with subcritical growth. Applying suitable variational and topological arguments, we obtain multiple positive solutions for epsilon > 0 sufficiently small as well as related concentration properties, in relationship with the set where the potential V attains its minimum. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:101 / 145
页数:45
相关论文
共 74 条
[31]  
Cingolani S., 1997, Topol. Methods Nonlinear Anal., V10, DOI [DOI 10.12775/TMNA.1997.019, 10.12775/TMNA.1997.019]
[32]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[33]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[34]   Concentrating standing waves for the fractional nonlinear Schrodinger equation [J].
Davila, Juan ;
del Pino, Manuel ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) :858-892
[35]   On the Regularity of Minima of Non-autonomous Functionals [J].
De Filippis, Cristiana ;
Mingione, Giuseppe .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1584-1626
[36]   Holder regularity for nonlocal double phase equations [J].
De Filippis, Cristiana ;
Palatucci, Giampiero .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) :547-586
[37]   Spectrum of the fractional p-Laplacian in RN and decay estimate for positive solutions of a Schrodinger equation [J].
Del Pezzo, Leandro M. ;
Quaas, Alexander .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[38]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[39]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[40]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573