Fractional double-phase patterns: concentration and multiplicity of solutions

被引:68
作者
Ambrosio, Vincenzo [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 142卷
关键词
Fractional p&q Laplacian problem; Double phase energy; Penalization technique; Nehari manifold; Ljusternik-Schnirelmann theory; Q LAPLACIAN PROBLEMS; Q ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; HOLDER REGULARITY; SUPERLINEAR (P; R-N; EXISTENCE; BEHAVIOR; GROWTH;
D O I
10.1016/j.matpur.2020.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of fractional problems with unbalanced growth: {(-Delta)(p)(s)u + (-Delta)(q)(s)u + V(epsilon x) (vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u) = f(u) in RN, u is an element of W-s,W-p (R-N) boolean AND W-s,W-q (R-N), u < 0 in R-N, where epsilon > 0 is a small parameter, s is an element of (0,1), 2 <= p < q < N/s, (-Delta)(t)(s) (with t is an element of {p,q}) is the fractional t-Laplacian operator, V : R-N -> R is a continuous potential satisfying local conditions, and f : R -> R is a continuous nonlinearity with subcritical growth. Applying suitable variational and topological arguments, we obtain multiple positive solutions for epsilon > 0 sufficiently small as well as related concentration properties, in relationship with the set where the potential V attains its minimum. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:101 / 145
页数:45
相关论文
共 74 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   EXISTENCE, MULTIPLICITY AND CONCENTRATION FOR A CLASS OF FRACTIONAL p&q LAPLACIAN PROBLEMS IN RN [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :2009-2045
[3]  
Alves CO, 2016, ELECTRON J DIFFER EQ
[4]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[5]  
Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
[6]  
Alves CO, 2005, ADV NONLINEAR STUD, V5, P551
[7]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[8]   Fractional p&q Laplacian Problems in RN with Critical Growth [J].
Ambrosio, Vincenzo .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (03) :289-314
[9]   Concentrating solutions for a class of nonlinear fractional Schrodinger equations in RN [J].
Ambrosio, Vincenzo .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) :1367-1414
[10]  
Ambrosio V, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-018-1259-9