Alternative representation of the linear canonical integral transform

被引:38
作者
Alieva, T
Bastiaans, MJ
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, E-28040 Madrid, Spain
[2] Tech Univ Eindhoven, Fac Elektrotech, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1364/OL.30.003302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Starting with the Iwasawa-type decomposition of a first-order optical system (or ABCD system) as a cascade of a lens, a magnifier, and an orthosymplectic system (a system that is both symplectic and orthogonal), a further decomposition of the orthosymplectic system in the form of a separable fractional Fourier transformer embedded between two spatial-coordinate rotators is proposed. The resulting decomposition of the entire first-order optical system then shows a physically attractive representation of the linear canonical integral transformation, which, in contrast to Collins integral, is valid for any ray transformation matrix. (c) 2005 Optical Society of America
引用
收藏
页码:3302 / 3304
页数:3
相关论文
共 8 条
[2]  
Luneburg R. K., 1944, MATH THEORY OPTICS
[3]   ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS [J].
MCBRIDE, AC ;
KERR, FH .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) :159-175
[4]   LINEAR CANONICAL TRANSFORMATIONS AND THEIR UNITARY REPRESENTATIONS [J].
MOSHINSKY, M ;
QUESNE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) :1772-+
[5]  
NAMIAS V, 1980, J I MATH APPL, V25, P241
[6]  
Ozaktas H., 2001, The Fractional Fourier Transform with Applications in Optics and Signal Processing
[7]   Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams [J].
Simon, R ;
Mukunda, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (08) :2146-2155
[8]  
Wolf K.B., 2004, Geometric Optics on Phase Space