ON THE LEFT LINEAR HILBERT PROBLEM IN CLIFFORD ANALYSIS

被引:1
作者
Si, Zhong-Wei [1 ]
Du, Jin-Yuan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS | 2011年
关键词
Riemann problem; Hilbert problem; monogenic function;
D O I
10.1142/9789814327862_0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Hilbert boundary value problem in R-0,R-m Clifford analysis. Find a R-0,R-m-valued left monogenic function u(x) in R-+(m,) which can extend continuously to R-0(m), whose positive boundary value u(+) satisfies X-(m) (a(t)u(+)(t)) = c(t), t is an element of R-0(m), where c(t) is a R-0,(m-1)-valued function, a(x) is a given R-0,R-m-valued function, whose inverse a(-1)(x) exsists. We may transform the Hilbert problem into a Riemann boundary value problem, in [1] the Riemann problem may be solved by the successive approximation, if a(x) satisfies some conditions.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 15 条
[1]  
Bernstein S., 1996, Bull. Belg. Math. Soc. Simon Stevin, V3, P557
[2]  
Bernstein S., 1998, Complex Variables Theory Appl, V35, P33, DOI [10.1080/17476939808815071, DOI 10.1080/17476939808815071]
[3]  
Brackx F., 1982, RES NOTES MATH
[4]  
Delanghe R., 1992, MATH ITS APPL, V53
[5]  
Erdelyi A., 1953, Higher transcendental functions, V2
[6]  
GILBERT GE, 1991, CAMBRIDGE STUDIES AD, V26
[7]  
Gong Y. F., 2004, THEORY APPL, V49, P303
[8]  
Mikhlin S.G., 1986, Singular integral operators
[9]  
SEELEY RT, 1963, J MATH ANAL APPL, V7, P289
[10]  
Shapiro M. V., 1988, MAT VESTNIK BEOGRAD, V40, P321