A new proof of scattering below the ground state for the non-radial focusing NLS

被引:43
作者
Dodson, Benjamin [1 ]
Murphy, Jason [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, 404 Krieger Hall,3400 N Charles St, Baltimore, MD 21218 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, 202 Rolla Bldg,400 W 12th St, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
NONLINEAR SCHRODINGER-EQUATION;
D O I
10.4310/MRL.2018.v25.n6.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the scattering result of Duyckaerts, Holmer, and Roudenko for the non-radial (H)over dot(1)(/2) -critical focusing NLS. By proving an interaction Morawetz inequality, we give a simple proof of scattering below the ground state in dimensions d >= 3 that avoids the use of concentration compactness.
引用
收藏
页码:1805 / 1825
页数:21
相关论文
共 18 条
[1]  
Cazenave T., Courant Lecture Notes in Mathematics, V10
[2]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[3]   Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3 [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) :987-1014
[4]  
Dodson B., ARXIV14091950
[5]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867
[7]   Scattering Norm Estimate Near the Threshold for Energy-critical Focusing Semilinear Wave Equation [J].
Duyckaerts, Thomas ;
Merle, Frank .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1971-2001
[8]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233
[9]   Scattering for the focusing energy-subcritical nonlinear Schrodinger equation [J].
Fang DaoYuan ;
Xie Jian ;
Cazenave Thierry .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) :2037-2062
[10]   SMOOTHING PROPERTIES AND RETARDED ESTIMATES FOR SOME DISPERSIVE EVOLUTION-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (01) :163-188