Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486

被引:3
|
作者
Dolan, Bridget M. [1 ,2 ]
Duron, Sergio G. [3 ]
Campbell, David A. [3 ]
Vollrath, Benedikt [3 ]
Rao, B. S. Shankaranarayana [4 ]
Ko, Hui-Yeon [5 ]
Lin, Gregory G. [1 ,2 ]
Govindarajan, Arvind [1 ,2 ]
Choi, Se-Young [5 ]
Tonegawa, Susumu [1 ,2 ]
机构
[1] MIT, Dept Biol, Picower Inst Learning & Memory, RIKEN MIT Ctr Neural Circuit Genet, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] Afraxis Inc, La Jolla, CA 92037 USA
[4] Natl Inst Mental Hlth & Neurosci, Dept Neurophysiol, Bangalore 560029, Karnataka, India
[5] Seoul Natl Univ, Sch Dent, Dept Physiol, Seoul 110749, South Korea
基金
美国国家卫生研究院;
关键词
drug discovery; neurodevelopmental disorder; DENDRITIC SPINE; KNOCKOUT MICE; MOUSE MODEL; AUTISM; HIPPOCAMPAL; EPILEPSY; CHILDREN; PATHWAY; PREVALENCE; DYNAMICS;
D O I
10.1073/pnas.1219383110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fragile X syndrome (FXS) is the most common inherited form of autism and intellectual disability and is caused by the silencing of a single gene, fragile X mental retardation 1 (Fmr1). The Fmr1 KO mouse displays phenotypes similar to symptoms in the human condition-including hyperactivity, repetitive behaviors, and seizures-as well as analogous abnormalities in the density of dendritic spines. Here we take a hypothesis-driven, mechanism-based approach to the search for an effective therapy for FXS. We hypothesize that a treatment that rescues the dendritic spine defect in Fmr1 KO mice may also ameliorate autism-like behavioral symptoms. Thus, we targeted a protein that regulates spines through modulation of actin cytoskeleton dynamics: p21-activated kinase (PAK). Our results demonstrate that a potent small molecule inhibitor of group I PAKs reverses dendritic spine phenotypes in Fmr1 KO mice. Moreover, this PAK inhibitor-which we call FRAX486-also rescues seizures and behavioral abnormalities such as hyperactivity and repetitive movements, thereby supporting the hypothesis that a drug treatment that reverses the spine abnormalities can also treat neurological and behavioral symptoms. Finally, a single administration of FRAX486 is sufficient to rescue all of these phenotypes in adult Fmr1 KO mice, demonstrating the potential for rapid, post-diagnostic therapy in adults with FXS.
引用
收藏
页码:5671 / 5676
页数:6
相关论文
共 14 条
  • [1] Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule
    Hebert, Betty
    Pietropaolo, Susanna
    Meme, Sandra
    Laudier, Beatrice
    Laugeray, Anthony
    Doisne, Nicolas
    Quartier, Angelique
    Lefeuvre, Sandrine
    Got, Laurence
    Cahard, Dominique
    Laumonnier, Frederic
    Crusio, Wim E.
    Pichon, Jacques
    Menuet, Arnaud
    Perche, Olivier
    Briault, Sylvain
    ORPHANET JOURNAL OF RARE DISEASES, 2014, 9
  • [2] Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene
    Liu, X. Shawn
    Wu, Hao
    Krzisch, Marine
    Wu, Xuebing
    Graef, John
    Muffat, Julien
    Hnisz, Denes
    Li, Charles H.
    Yuan, Bingbing
    Xu, Chuanyun
    Li, Yun
    Vershkov, Dan
    Cacace, Angela
    Young, Richard A.
    Jaenisch, Rudolf
    CELL, 2018, 172 (05) : 979 - +
  • [3] Reversal of Fragile X Phenotypes by Manipulation of AβPP/Aβ Levels in Fmr1KO Mice
    Westmark, Cara J.
    Westmark, Pamela R.
    O'Riordan, Kenneth J.
    Ray, Brian C.
    Hervey, Crystal M.
    Salamat, M. Shahriar
    Abozeid, Sara H.
    Stein, Kelsey M.
    Stodola, Levi A.
    Tranfaglia, Michael
    Burger, Corinna
    Berry-Kravis, Elizabeth M.
    Malter, James S.
    PLOS ONE, 2011, 6 (10):
  • [4] High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells
    Hunt, Jack F. V.
    Li, Meng
    Risgaard, Ryan
    Ananiev, Gene E.
    Wildman, Scott
    Zhang, Fan
    Bugni, Tim S.
    Zhao, Xinyu
    Bhattacharyya, Anita
    CELLS, 2022, 11 (01)
  • [5] Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice
    Pietropaolo, Susanna
    Goubran, Mina G.
    Joffre, Corinne
    Aubert, Agnes
    Lemaire-Mayo, Valerie
    Crusio, Wim E.
    Laye, Sophie
    PSYCHONEUROENDOCRINOLOGY, 2014, 49 : 119 - 129
  • [6] Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model
    Kat, Renate
    Arroyo-Araujo, Maria
    de Vries, Rob B. M.
    Koopmans, Marthe A.
    de Boer, Sietse F.
    Kas, Martien J. H.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2022, 139
  • [7] Parallel learning and cognitive flexibility impairments between Fmr1 knockout mice and individuals with fragile X syndrome
    Schmitt, Lauren M.
    Arzuaga, Anna L.
    Dapore, Ashley
    Duncan, Jason
    Patel, Maya
    Larson, John R.
    Erickson, Craig A.
    Sweeney, John A.
    Ragozzino, Michael E.
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2023, 16
  • [8] A comparative study of the performance of individuals with fragile X syndrome and Fmr1 knockout mice on Hebb-Williams mazes
    MacLeod, L. S.
    Kogan, C. S.
    Collin, C. A.
    Berry-Kravis, E.
    Messier, C.
    Gandhi, R.
    GENES BRAIN AND BEHAVIOR, 2010, 9 (01) : 53 - 64
  • [9] Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice
    Janz, Philipp
    Bainier, Marie
    Marashli, Samuel
    Gross, Simon
    Redondo, Roger L.
    NEUROPHARMACOLOGY, 2025, 262
  • [10] A MicroRNA Profile in Fmr1 Knockout Mice Reveals MicroRNA Expression Alterations with Possible Roles in Fragile X Syndrome
    Liu, Ting
    Wan, Rui-Ping
    Tang, Ling-Jia
    Liu, Shu-Jing
    Li, Hai-Jun
    Zhao, Qi-Hua
    Liao, Wei-Ping
    Sun, Xiao-Fang
    Yi, Yong-Hong
    Long, Yue-Sheng
    MOLECULAR NEUROBIOLOGY, 2015, 51 (03) : 1053 - 1063