Spatially Reprogramed Receptor Organization to Switch Cell Behavior Using a DNA Origami-Templated Aptamer Nanoarray

被引:26
|
作者
Wang, Miao [1 ]
Yang, Donglei [2 ]
Lu, Qin [1 ,3 ]
Liu, Lin [1 ]
Cai, Zixin [1 ]
Wang, Yirong [1 ]
Wang, Hong-Hui [1 ]
Wang, Pengfei [2 ]
Nie, Zhou [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Coll Biol, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Shanghai Jiao Tong Univ, Renji Hosp, Inst Mol Med, Sch Med,Dept Lab Med,Shanghai Key Lab Nucle Acid C, Shanghai 200127, Peoples R China
[3] GeneMind Biosci Co Ltd, Shenzhen 518000, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
DNA origami; Aptamer ligand; Multivalency; Receptor oligomerization; Cellular behavior; NANOTECHNOLOGY; LIGANDS;
D O I
10.1021/acs.nanolett.2c02489
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Receptor oligomerization is a highly complex molecular process that modulates divergent cell signaling. However, there is a lack of molecular tools for systematically interrogating how receptor oligomerization governs the signaling response. Here, we developed a DNA origami-templated aptamer nanoarray (DOTA) that enables precise programming of the oligomerization of receptor tyrosine kinases (RTK) with defined valency, distribution, and stoichiometry at the ligand-receptor interface. The DOTA allows for advanced receptor manipulations by arraying either monomeric aptamer ligands (mALs) that oligamerize receptor monomers to elicit artificial signaling or dimeric aptamer ligands (dALs) that preorganize the receptor dimer to recapitulate natural activation. We demonstrated that the multivalency and nanoscale spacing of receptor oligomerization coordinately influence the activation level of receptor tyrosine kinase signaling. Furthermore, we illustrated that DOTA-modulated receptor oligomerization could function as a signaling switch to promote the transition from epithelia to mesenchymal-like cells, demonstrating robust control over cellular behaviors. Together, we present a versatile all-in-one DNA nanoplatform for the systematical investigation and regulation of receptor-mediated cellular response.
引用
收藏
页码:8445 / 8454
页数:10
相关论文
共 6 条
  • [1] DNA origami-templated individual gold nanoclusters: probing their photophysical dynamics using single-molecule fluorescence spectroscopy
    Rai, Shikha
    Kaur, Vishaldeep
    Kaur, Charanleen
    Sharma, Mridu
    Sen, Tapasi
    NANOSCALE, 2025,
  • [2] Nanoscale Organization of TRAIL Trimers using DNA Origami to Promote Clustering of Death Receptor and Cancer Cell Apoptosis
    Ma, Nana
    Cheng, Keman
    Feng, Qingqing
    Liu, Guangna
    Liang, Jie
    Ma, Xiaotu
    Chen, Zhiqiang
    Lu, Yichao
    Wang, Xinwei
    He, Wei
    Xu, Hu
    Wu, Shan
    Zou, Jiajia
    Shi, Quanwei
    Nie, Guangjun
    Zhao, Xiao
    SMALL, 2023, 19 (23)
  • [3] Role of nanoscale antigen organization on T-cell activation probed using DNA origami
    Hellmeier, Joschka
    Platzer, Rene
    Schuetz, Gerhard J.
    Huppa, Johannes B.
    Sevcsik, Eva
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 162 - 162
  • [4] Role of nanoscale antigen organization on B-cell activation probed using DNA origami
    Veneziano, Remi
    Moyer, Tyson J.
    Stone, Matthew B.
    Wamhoff, Eike-Christian
    Read, Benjamin J.
    Mukherjee, Sayak
    Shepherd, Tyson R.
    Das, Jayajit
    Schief, William R.
    Irvine, Darrell J.
    Bathe, Mark
    NATURE NANOTECHNOLOGY, 2020, 15 (08) : 716 - +
  • [5] Role of nanoscale antigen organization on B-cell activation probed using DNA origami
    Rémi Veneziano
    Tyson J. Moyer
    Matthew B. Stone
    Eike-Christian Wamhoff
    Benjamin J. Read
    Sayak Mukherjee
    Tyson R. Shepherd
    Jayajit Das
    William R. Schief
    Darrell J. Irvine
    Mark Bathe
    Nature Nanotechnology, 2020, 15 : 716 - 723
  • [6] Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors
    Hu, Yuesong
    Rogers, Jhordan
    Duan, Yuxin
    Velusamy, Arventh
    Narum, Steven
    Al Abdullatif, Sarah
    Salaita, Khalid
    NATURE NANOTECHNOLOGY, 2024, 19 (11) : 1674 - 1685