Explainable neural networks that simulate reasoning

被引:24
作者
Blazek, Paul J. [1 ,2 ,3 ]
Lin, Milo M. [1 ,2 ,3 ,4 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Green Ctr Syst Biol, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Bioinformat, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Biophys, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Ctr Alzheimers & Neurodegenerat Dis, Dallas, TX 75390 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 09期
关键词
SPARSENESS; ALGORITHMS; RESPONSES; DESIGN; MODELS;
D O I
10.1038/s43588-021-00132-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The success of deep neural networks suggests that cognition may emerge from indecipherable patterns of distributed neural activity. Yet these networks are pattern-matching black boxes that cannot simulate higher cognitive functions and lack numerous neurobiological features. Accordingly, they are currently insufficient computational models for understanding neural information processing. Here, we show how neural circuits can directly encode cognitive processes via simple neurobiological principles. To illustrate, we implemented this model in a non-gradient-based machine learning algorithm to train deep neural networks called essence neural networks (ENNs). Neural information processing in ENNs is intrinsically explainable, even on benchmark computer vision tasks. ENNs can also simulate higher cognitive functions such as deliberation, symbolic reasoning and out-of-distribution generalization. ENNs display network properties associated with the brain, such as modularity, distributed and localist firing, and adversarial robustness. ENNs establish a broad computational framework to decipher the neural basis of cognition and pursue artificial general intelligence.
引用
收藏
页码:607 / 618
页数:12
相关论文
共 59 条
  • [21] Gurney K., 1997, An Introduction to Neural Networks
  • [22] Han S, 2015, ADV NEUR IN, V28
  • [23] DESIGN AND EVOLUTION OF MODULAR NEURAL-NETWORK ARCHITECTURES
    HAPPEL, BLM
    MURRE, JMJ
    [J]. NEURAL NETWORKS, 1994, 7 (6-7) : 985 - 1004
  • [24] Hobhouse L. T., 1921, THEORY KNOWLEDGE CON, V3rd
  • [25] Hu SB, 2020, PR MACH LEARN RES, V115, P292
  • [26] Hyafil L., 1976, Information Processing Letters, V5, P15, DOI 10.1016/0020-0190(76)90095-8
  • [27] Jha Debesh, 2021, Parallel and Distributed Computing, Applications and Technologies. 21st International Conference, PDCAT 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12606), P285, DOI 10.1007/978-3-030-69244-5_25
  • [28] APPROXIMATION ALGORITHMS FOR COMBINATORIAL PROBLEMS
    JOHNSON, DS
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1974, 9 (03) : 256 - 278
  • [29] Kant I., 1998, Critique of Pure Reason
  • [30] Karp R.M., 1972, Proceedings of a Symposium on the Complexity of Computer Computations, P85, DOI [10.1007/978-1-4684-2001, 10.1007/978-1-4684-2001-29, DOI 10.1007/978-3-540-68279-0_8, DOI 10.1007/978-1-4684-2001-29]