Linear-spline approximation for semi-parametric modeling of failure data with proportional hazards

被引:2
|
作者
Guo, R [1 ]
Love, CE [1 ]
机构
[1] SIMON FRASER UNIV,FAC BUSINESS ADM,BURNABY,BC V5A 1S6,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
proportional hazard; semi-parametric; step function; spline function; bad-as-old; good-as-new;
D O I
10.1109/24.510812
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling of failure processes using proportional hazards involves estimating both a baseline failure intensity as well as the parameters of the proportional failure intensity. In the absence of any information regarding the baseline failure intensity, a non-parametric form is typically assumed. This paper proposes a linear-spline function to approximate this baseline failure intensity, and develops such a spline function appropriate to bad-as-old failure data generated from a repairable system, Field data from an industrial setting demonstrate an improved approximation using such a spline function as compared to other procedures in the literature.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [41] The power of testing a semi-parametric shared gamma frailty parameter in failure time data
    Rahgozar, Mehdi
    Faghihzadeh, Soghrat
    Rouchi, Gholamreza Babaee
    Peng, Yingwei
    STATISTICS IN MEDICINE, 2008, 27 (21) : 4328 - 4339
  • [42] Modeling zero response data from willingness to pay surveys - A semi-parametric estimation
    Yoo, SH
    Kim, TY
    Lee, JK
    ECONOMICS LETTERS, 2001, 71 (02) : 191 - 196
  • [43] Hybrid semi-parametric modeling of biological systems: Application to spectroscopic data for the estimation of concentrations
    von Stosch, M.
    Oliveira, R.
    Peres, J.
    Feyo de Azevedo, S.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 1021 - 1026
  • [44] Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JS']JSM
    Xu, Cong
    Hadjipantelis, Pantelis Z.
    Wang, Jane-Ling
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (02): : 1 - 29
  • [45] Semi-parametric estimation in the compositional modeling of multicomponent systems from Raman spectroscopic data
    Sowa, Michael G.
    Smith, Michael S. D.
    Kendall, Catherine
    Bock, Erika R.
    Ko, Alex C. -T.
    Choo-Smith, Lin-P'ing
    Stone, Nicholas
    APPLIED SPECTROSCOPY, 2006, 60 (08) : 877 - 883
  • [46] Semi-Parametric Non-Proportional Hazard Model with Time Varying Covariate
    Adeleke, Kazeem A.
    Abiodun, Alfred A.
    Ipinyomi, R. A.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2015, 14 (02) : 68 - 87
  • [47] ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
    AL-Adilee, Reem Tallal Kamil
    Aboudi, Emad Hazim
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1963 - 1972
  • [48] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [49] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249
  • [50] Learning from Biased Data: A Semi-Parametric Approach
    Bertail, Patrice
    Clemencon, Stephan
    Guyonvarch, Yannick
    Noiry, Nathan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139