Linear-spline approximation for semi-parametric modeling of failure data with proportional hazards

被引:2
|
作者
Guo, R [1 ]
Love, CE [1 ]
机构
[1] SIMON FRASER UNIV,FAC BUSINESS ADM,BURNABY,BC V5A 1S6,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
proportional hazard; semi-parametric; step function; spline function; bad-as-old; good-as-new;
D O I
10.1109/24.510812
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling of failure processes using proportional hazards involves estimating both a baseline failure intensity as well as the parameters of the proportional failure intensity. In the absence of any information regarding the baseline failure intensity, a non-parametric form is typically assumed. This paper proposes a linear-spline function to approximate this baseline failure intensity, and develops such a spline function appropriate to bad-as-old failure data generated from a repairable system, Field data from an industrial setting demonstrate an improved approximation using such a spline function as compared to other procedures in the literature.
引用
收藏
页码:261 / 266
页数:6
相关论文
共 50 条
  • [31] Generalized linear models in software reliability: Parametric & semi-parametric approaches
    ElAroui, MA
    Lavergne, C
    IEEE TRANSACTIONS ON RELIABILITY, 1996, 45 (03) : 463 - 470
  • [32] A semi-parametric accelerated failure time cure model
    Li, CS
    Taylor, JMG
    STATISTICS IN MEDICINE, 2002, 21 (21) : 3235 - 3247
  • [33] A Bayesian semi-parametric bivariate failure time model
    Nieto-Barajas, Luis E.
    Walker, Stephen G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 6102 - 6113
  • [34] Semi-Parametric Cure Rate Proportional Odds Models with Spatial Frailties for Interval-Censored Data
    Bao Yiqi
    Cancho, Vicente G.
    Louzada, Francisco
    Suzuki, Adriano K.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2019, 11 (3-4)
  • [35] Ensemble of Semi-Parametric Models for IoT Fog Modeling
    Jan, Ibny
    Iranmanesh, Saeid
    Sajeev, A. S. M.
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2995 - 2998
  • [36] Hybrid Semi-parametric Modeling in Separation Processes: A Review
    McBride, Kevin
    Sanchez Medina, Edgar Ivan
    Sundmacher, Kai
    CHEMIE INGENIEUR TECHNIK, 2020, 92 (07) : 842 - 855
  • [37] Bayesian modeling and optimization based on semi-parametric hierarchy
    Chen X.
    Wang J.
    Yang S.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (05): : 1580 - 1588
  • [38] Semi-parametric MLE in simple linear regression analysis with interval-censored data
    Yu, QQ
    Wong, GYC
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (01) : 147 - 163
  • [39] Consistency of the semi-parametric MLE in linear regression models with interval-censored data
    Yu, QQ
    Wong, GYC
    Kong, FH
    SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (02) : 367 - 378
  • [40] Online semi-parametric learning for inverse dynamics modeling
    Romeres, Diego
    Zorzi, Mattia
    Camoriano, Raffaello
    Chiuso, Alessandro
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2945 - 2950