What Is a Digital Twin? Experimental Design for a Data-Centric Machine Learning Perspective in Health

被引:14
|
作者
Emmert-Streib, Frank [1 ]
Yli-Harja, Olli [2 ,3 ]
机构
[1] Tampere Univ, Predict Soc & Data Analyt Lab, Fac Informat Technol & Commun Sci, Tampere 33100, Finland
[2] Tampere Univ, Fac Med & Hlth Technol, Computat Syst Biol, Tampere 33720, Finland
[3] Inst Syst Biol, Seattle, WA 98195 USA
关键词
digital twin; data science; machine learning; experimental design; genomics; personalized medicine; GENE-EXPRESSION; NETWORKS;
D O I
10.3390/ijms232113149
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The idea of a digital twin has recently gained widespread attention. While, so far, it has been used predominantly for problems in engineering and manufacturing, it is believed that a digital twin also holds great promise for applications in medicine and health. However, a problem that severely hampers progress in these fields is the lack of a solid definition of the concept behind a digital twin that would be directly amenable for such big data-driven fields requiring a statistical data analysis. In this paper, we address this problem. We will see that the term 'digital twin', as used in the literature, is like a Matryoshka doll. For this reason, we unstack the concept via a data-centric machine learning perspective, allowing us to define its main components. As a consequence, we suggest to use the term Digital Twin System instead of digital twin because this highlights its complex interconnected substructure. In addition, we address ethical concerns that result from treatment suggestions for patients based on simulated data and a possible lack of explainability of the underling models.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Taxonomy of machine learning paradigms: A data-centric perspective
    Emmert-Streib, Frank
    Dehmer, Matthias
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (05)
  • [2] A Data-Centric Optimization Framework for Machine Learning
    Rausch, Oliver
    Ben-Nun, Tal
    Dryden, Nikoli
    Ivanov, Andrei
    Li, Shigang
    Hoefler, Torsten
    PROCEEDINGS OF THE 36TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ICS 2022, 2022,
  • [3] Data-Centric Machine Learning in Nursing: A Concept Clarification
    Ball Dunlap, Patricia A.
    Nahm, Eun-Shim
    Umberfield, Elizabeth E.
    CIN-COMPUTERS INFORMATICS NURSING, 2024, 42 (05) : 325 - 333
  • [4] Data-Centric Approaches to Radio Frequency Machine Learning
    Kuzdeba, Scott
    Robinson, Josh
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [5] Data-centric machine learning in quantum information science
    Lohani, Sanjaya
    Lukens, Joseph M.
    Glasser, Ryan T.
    Searles, Thomas A.
    Kirby, Brian T.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (04):
  • [6] Data-Centric Machine Learning Pipeline for Hardware Verification
    Shin, Hongsup
    2022 IEEE 35TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (IEEE SOCC 2022), 2022, : 11 - 12
  • [7] Data-Centric Workshop Digital Twin Conceptual Modeling Method And Application
    Li, Jiqi
    Liu, Guohua
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 92 - 99
  • [8] Data-Centric Operational Design Domain Characterization for Machine Learning-Based Aeronautical Products
    Kaakai, Fateh
    Adibhatla, Sridhar
    Pai, Ganesh
    Escorihuela, Emmanuelle
    COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2023, 2023, 14181 : 227 - 242
  • [9] Better, Not Just More: Data-centric machine learning for Earth observation
    Roscher, Ribana
    Russwurm, Marc
    Gevaert, Caroline
    Kampffmeyer, Michael
    Dos Santos, Jefersson A.
    Vakalopoulou, Maria
    Haensch, Ronny
    Hansen, Stine
    Nogueira, Keiller
    Prexl, Jonathan
    Tuia, Devis
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2024, 12 (04) : 335 - 355
  • [10] Data-centric approach to improve machine learning models for inorganic materials
    Bartel, Christopher J.
    PATTERNS, 2021, 2 (11):