ACDC: Online unsupervised cross-domain adaptation

被引:7
作者
de Carvalho, Marcus [1 ]
Pratama, Mahardhika [2 ]
Zhang, Jie [1 ]
Yee, Edward Yapp Kien [3 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Univ South Australia, STEM, Adelaide, SA, Australia
[3] Singapore Inst Mfg Technol, Astar, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Stream learning; Multistream learning; Domain adaptation; Online learning; Data streams;
D O I
10.1016/j.knosys.2022.109486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of online unsupervised cross-domain adaptation, where two independent but related data streams with different feature spaces - a fully labeled source stream and an unlabeled target stream - are learned together. Unique characteristics and challenges such as covariate shift, asynchronous concept drifts, and contrasting data throughput arise. We propose ACDC, an adversarial unsupervised domain adaptation framework that handles multiple data streams with a complete self-evolving neural network structure that reacts to these defiances. ACDC encapsulates three modules into a single model: A denoising autoencoder that extracts features, an adversarial module that performs domain conversion, and an estimator that learns the source stream and predicts the target stream. ACDC is a flexible and expandable framework with little hyper-parameter tunability. Our experimental results under the prequential test-then-train protocol indicate an improvement in target accuracy over the baseline methods, achieving more than a 10% increase in some cases. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Unsupervised style-guided cross-domain adaptation for few-shot stylized face translation [J].
Lan, Jiaying ;
Ye, Fenghua ;
Ye, Zhenghua ;
Xu, Pingping ;
Ling, Wing-Kuen ;
Huang, Guoheng .
VISUAL COMPUTER, 2023, 39 (12) :6167-6181
[22]   Discrimination and structure preserved cross-domain subspace learning for unsupervised domain adaption [J].
Tao Y. ;
Yang N. ;
Guo T. .
Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04) :90-99+117
[23]   A Novel Lightweight Unsupervised Multi-branch Domain Adaptation Network for Bearing Fault Diagnosis Under Cross-Domain Conditions [J].
Wang, Gongxian ;
Zhang, Teng ;
Hu, Zhihui ;
Zhang, Miao .
JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2023, 23 (04) :1645-1662
[24]   A Novel Lightweight Unsupervised Multi-branch Domain Adaptation Network for Bearing Fault Diagnosis Under Cross-Domain Conditions [J].
Gongxian Wang ;
Teng Zhang ;
Zhihui Hu ;
Miao Zhang .
Journal of Failure Analysis and Prevention, 2023, 23 :1645-1662
[25]   Cross-domain knowledge collaboration for blending-target domain adaptation [J].
Zhang, Bo ;
Zhang, Xiaoming ;
Huang, Feiran ;
Miao, Dezhuang .
INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (04)
[26]   Domain Adaptation via Feature Disentanglement for cross-domain image classification [J].
Wu, Zhi-Ze ;
Du, Chang-Jiang ;
Wang, Xin-Qi ;
Zou, Le ;
Cheng, Fan ;
Li, Teng ;
Nian, Fu-Dong ;
Weise, Thomas ;
Wang, Xiao-Feng .
APPLIED SOFT COMPUTING, 2025, 172
[27]   Adversarial Domain Adaptation with Semantic Consistency for Cross-Domain Image Classification [J].
Cao, Manliang ;
Zhou, Xiangdong ;
Xu, Yiming ;
Pang, Yue ;
Yao, Bo .
PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, :259-268
[28]   Joint Domain Matching and Classification for cross-domain adaptation via ELM [J].
Chen, Chao ;
Jiang, Buyuan ;
Cheng, Zhaowei ;
Jin, Xinyu .
NEUROCOMPUTING, 2019, 349 :314-325
[29]   Cross-Domain Person Reidentification Using Domain Adaptation Ranking SVMs [J].
Ma, Andy J. ;
Li, Jiawei ;
Yuen, Pong C. ;
Li, Ping .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (05) :1599-1613
[30]   Self-supervised domain adaptation for cross-domain fault diagnosis [J].
Lu, Weikai ;
Fan, Haoyi ;
Zeng, Kun ;
Li, Zuoyong ;
Chen, Jian .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) :10903-10923