ACDC: Online unsupervised cross-domain adaptation

被引:5
|
作者
de Carvalho, Marcus [1 ]
Pratama, Mahardhika [2 ]
Zhang, Jie [1 ]
Yee, Edward Yapp Kien [3 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Univ South Australia, STEM, Adelaide, SA, Australia
[3] Singapore Inst Mfg Technol, Astar, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Stream learning; Multistream learning; Domain adaptation; Online learning; Data streams;
D O I
10.1016/j.knosys.2022.109486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of online unsupervised cross-domain adaptation, where two independent but related data streams with different feature spaces - a fully labeled source stream and an unlabeled target stream - are learned together. Unique characteristics and challenges such as covariate shift, asynchronous concept drifts, and contrasting data throughput arise. We propose ACDC, an adversarial unsupervised domain adaptation framework that handles multiple data streams with a complete self-evolving neural network structure that reacts to these defiances. ACDC encapsulates three modules into a single model: A denoising autoencoder that extracts features, an adversarial module that performs domain conversion, and an estimator that learns the source stream and predicts the target stream. ACDC is a flexible and expandable framework with little hyper-parameter tunability. Our experimental results under the prequential test-then-train protocol indicate an improvement in target accuracy over the baseline methods, achieving more than a 10% increase in some cases. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Cross-domain feature enhancement for unsupervised domain adaptation
    Long Sifan
    Wang Shengsheng
    Zhao Xin
    Fu Zihao
    Wang Bilin
    Applied Intelligence, 2022, 52 : 17326 - 17340
  • [2] Cross-Domain Error Minimization for Unsupervised Domain Adaptation
    Du, Yuntao
    Chen, Yinghao
    Cui, Fengli
    Zhang, Xiaowen
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 429 - 448
  • [3] Cross-domain feature enhancement for unsupervised domain adaptation
    Sifan, Long
    Shengsheng, Wang
    Xin, Zhao
    Zihao, Fu
    Bilin, Wang
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17326 - 17340
  • [4] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23311 - 23331
  • [5] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Xiangning Li
    Chen Pan
    Lingmin He
    Xinyu Li
    Multimedia Tools and Applications, 2024, 83 : 23311 - 23331
  • [6] Cross-Domain Attention Network for Unsupervised Domain Adaptation Crowd Counting
    Zhang, Anran
    Xu, Jun
    Luo, Xiaoyan
    Cao, Xianbin
    Zhen, Xiantong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6686 - 6699
  • [7] Crowd Counting via Unsupervised Cross-Domain Feature Adaptation
    Ding, Guanchen
    Yang, Daiqin
    Wang, Tao
    Wang, Sihan
    Zhang, Yunfei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4665 - 4678
  • [8] Burn After Reading: Online Adaptation for Cross-domain Streaming Data
    Yang, Luyu
    Gao, Mingfei
    Chen, Zeyuan
    Xu, Ran
    Shrivastava, Abhinav
    Ramaiah, Chetan
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 404 - 422
  • [9] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Li, Jingzheng
    Sun, Hailong
    MACHINE LEARNING, 2023, 112 (09) : 3473 - 3496
  • [10] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Jingzheng Li
    Hailong Sun
    Machine Learning, 2023, 112 : 3473 - 3496