ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS

被引:20
作者
Micherda, Bartosz [1 ]
Rajba, Teresa [1 ]
机构
[1] Univ Bielsko Biala, Dept Math & Comp Sci, PL-43309 Bielsko Biala, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2012年 / 15卷 / 04期
关键词
Generalized convexity; Hermite-Hadamard's inequality; Fejer's inequality; CONVEX-FUNCTIONS;
D O I
10.7153/mia-15-79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the class of (k, h)-convex functions defined on k -convex domains, and we prove some new inequalities of Hermite-Hadamard and Fejer type for such mappings. This generalizes results given for h-convex functions in [1, 17], and for s-Orlicz convex mappings in [4].
引用
收藏
页码:931 / 940
页数:10
相关论文
共 18 条
[11]   THE EQUALITY CASE IN SOME RECENT CONVEXITY INEQUALITIES [J].
Maksa, Gyula ;
Pales, Zsolt .
OPUSCULA MATHEMATICA, 2011, 31 (02) :269-277
[12]   ON SUBADDITIVE FUNCTIONS [J].
MATKOWSKI, J ;
SWIATKOWSKI, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :187-197
[13]  
Mitrinovic M. S., 1985, Aequationes Math., V28, P229, DOI DOI 10.1007/BF02189414
[14]   P-functions, quasi-convex functions, and Hadamard-type inequalities [J].
Pearce, CEM ;
Rubinov, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) :92-104
[15]  
Rolewicz S., 1984, Metric Linear Spaces
[16]   SUB-ADDITIVE FUNCTIONS [J].
ROSENBAUM, RA .
DUKE MATHEMATICAL JOURNAL, 1950, 17 (03) :227-247
[17]  
Sarikaya MZ, 2010, ACTA MATH UNIV COMEN, V79, P265
[18]   On h-convexity [J].
Varosanec, Sanja .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :303-311