ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS

被引:20
作者
Micherda, Bartosz [1 ]
Rajba, Teresa [1 ]
机构
[1] Univ Bielsko Biala, Dept Math & Comp Sci, PL-43309 Bielsko Biala, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2012年 / 15卷 / 04期
关键词
Generalized convexity; Hermite-Hadamard's inequality; Fejer's inequality; CONVEX-FUNCTIONS;
D O I
10.7153/mia-15-79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the class of (k, h)-convex functions defined on k -convex domains, and we prove some new inequalities of Hermite-Hadamard and Fejer type for such mappings. This generalizes results given for h-convex functions in [1, 17], and for s-Orlicz convex mappings in [4].
引用
收藏
页码:931 / 940
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1973, PURE APPL MATH
[2]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[3]  
[Anonymous], 1998, DEMONSTR MATH, DOI DOI 10.1515/DEMA-1998-0214
[4]   Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities [J].
Bombardelli, Mea ;
Varosanec, Sanja .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) :1869-1877
[5]  
Breckner W.W., 1978, PUBL I MATH, V23, P13
[6]  
Dragomir S. S., 2000, RGMIA Monographs
[7]   s-Orlicz convex functions in linear spaces and Jensen's discrete inequality [J].
Dragomir, SS ;
Fitzpatrick, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (02) :419-439
[8]  
Fejer L., 1906, Anz Ungar. Akad. Wiss., V24, P369
[9]  
Godunova E.K., 1985, Vycislitel, Mat. i. Fiz. Mezvuzov. Sb. Nauc. MGPI Moskva, P138
[10]  
Hudzik H., 1994, Aequationes Math., V48, P100, DOI DOI 10.1007/BF01837981