Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis

被引:147
作者
Lin, Linhan [1 ,2 ,3 ]
Peng, Xiaolei [2 ,3 ]
Wang, Mingsong [1 ]
Scarabelli, Leonardo [5 ]
Mao, Zhangming [6 ]
Liz-Marzan, Luis M. [5 ,7 ,8 ]
Becker, Michael F. [2 ,3 ,4 ]
Zheng, Yuebing [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[5] CIC BiomaGUNE, Bionanoplasmon Lab, Paseo Miramon 182, San Sebastian 20009, Spain
[6] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[7] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[8] CIBER BBN, CIBER Bioingn Biomat & Nanomed, San Sebastian 20009, Spain
基金
欧洲研究理事会;
关键词
thermophoresis; photothermal effect; surface-enhanced Raman scattering; surface plasmons; nanoparticle trapping; reversible nanoparticle assembly; SINGLE NANO-OBJECTS; RAMAN-SCATTERING; GOLD NANOPARTICLES; METAL NANOPARTICLES; SILVER NANOSPHERES; TEMPERATURE-FIELDS; AU NANOPARTICLES; COLLOIDAL SILVER; FANO RESONANCE; HOT-SPOTS;
D O I
10.1021/acsnano.6b05486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/mu m(2)) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/mu m(2). Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.
引用
收藏
页码:9659 / 9668
页数:10
相关论文
共 65 条
[1]   Optical Printing of Electrodynamically Coupled Metallic Nanoparticle Arrays [J].
Bao, Ying ;
Yan, Zijie ;
Scherer, Norbert F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (33) :19315-19321
[2]   Single Molecules Trapped by Dynamic Inhomogeneous Temperature Fields [J].
Braun, Marco ;
Bregulla, Andreas P. ;
Guenther, Katrin ;
Mertig, Michael ;
Cichoet, Frank .
NANO LETTERS, 2015, 15 (08) :5499-5505
[3]   Trapping of single nano-objects in dynamic temperature fields [J].
Braun, Marco ;
Wuerger, Alois ;
Cichos, Frank .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15207-15213
[4]   Optically Controlled Thermophoretic Trapping of Single Nano-Objects [J].
Braun, Marco ;
Cichos, Frank .
ACS NANO, 2013, 7 (12) :11200-11208
[5]   Thermo-Osmotic Flow in Thin Films [J].
Bregulla, Andreas P. ;
Wuerger, Alois ;
Guenther, Katrin ;
Mertig, Michael ;
Cichos, Frank .
PHYSICAL REVIEW LETTERS, 2016, 116 (18)
[6]   Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin [J].
Brown, Sarah D. ;
Nativo, Paola ;
Smith, Jo-Ann ;
Stirling, David ;
Edwards, Paul R. ;
Venugopal, Balaji ;
Flint, David J. ;
Plumb, Jane A. ;
Graham, Duncan ;
Wheate, Nial J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (13) :4678-4684
[7]   Surface-enhanced Raman scattering [J].
Campion, A ;
Kambhampati, P .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) :241-250
[8]   How To Light Special Hot Spots in Multiparticle-Film Configurations [J].
Chen, Shu ;
Meng, Ling-Yan ;
Shan, Hang-Yong ;
Li, Jian-Feng ;
Qian, Lihua ;
Williams, Christopher T. ;
Yang, Zhi-Lin ;
Tian, Zhong-Qun .
ACS NANO, 2016, 10 (01) :581-587
[9]   Single-molecule strong coupling at room temperature in plasmonic nanocavities [J].
Chikkaraddy, Rohit ;
de Nijs, Bart ;
Benz, Felix ;
Barrow, Steven J. ;
Scherman, Oren A. ;
Rosta, Edina ;
Demetriadou, Angela ;
Fox, Peter ;
Hess, Ortwin ;
Baumberg, Jeremy J. .
NATURE, 2016, 535 (7610) :127-130
[10]   Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics [J].
Cimmarusti, A. D. ;
Yan, Z. ;
Patterson, B. D. ;
Corcos, L. P. ;
Orozco, L. A. ;
Deffner, S. .
PHYSICAL REVIEW LETTERS, 2015, 114 (23)