Towards a sustainable technology for H2 production: Direct lignin electrolysis in a continuous-flow Polymer Electrolyte Membrane reactor

被引:72
作者
Caravaca, Angel [1 ]
Eunice Garcia-Lorefice, Wendy [1 ,2 ]
Gil, Sonia [1 ]
de Lucas-Consuegra, Antonio [2 ]
Vernoux, Philippe [1 ]
机构
[1] Univ Lyon, Inst Rech Catalyse & Environm Lyon, UMR 5256, CNRS,Univ Claude Bernard Lyon 1, 2 Ave A Einstein, F-69626 Villeurbanne, France
[2] Univ Castilla La Mancha, Dept Chem Engn, Sch Chem Sci & Technol, Ave Camilo Jose Cela 12, Ciudad Real 13005, Spain
关键词
Hydrogen production; Lignin valorization; Polymer Electrolyte Membrane electrolyser; Biomass electrolysis; HYDROGEN-PRODUCTION; BLACK LIQUOR; ETHANOL; CONVERSION; BIOMASS; DEPOLYMERIZATION; ALCOHOLS;
D O I
10.1016/j.elecom.2019.01.016
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We have performed, for the very first time in literature, the production of pure H-2 via "electrolysis of lignin solutions in continuous-flow mode in a Polymer Electrolyte Membrane (PEM) reactor". A Pt-Ru//Fumapem (OH- conductor)//Pt/C (Anode//Anion Exchange membrane//Cathode) electrochemical cell was used. Under the explored conditions, we have demonstrated that lignin can be electrolyzed at much lower electrical potentials (from similar to 0.45 V) compared to that of water electrolysis (thermodynamically favored from similar to 1.2 V). In addition, we observed that increasing the reaction temperature gives rise to an enhanced activity towards the electrolysis of lignin, increasing therefore the production of pure H-2. Finally, in-situ cyclic voltammetry experiments were performed in the PEM cell to demonstrate that lignin electro-oxidation takes place at potentials lower than that for O-2 evolution. These experiments also showed that the whole system did not suffer a significant deactivation during the electrolysis experiments, which pointed out the promising stability and reproducibility of the proposed technology. Further studies should be performed to identify the products of the lignin electro-oxidation at the anode. This study establishes a very important step-forward towards the direct electrochemical valorization of lignin (usually considered as a biomass residue) for a sustainable production of pure H-2 using renewable sources.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 27 条
[1]   Hydrogen from electrochemical reforming of ethanol assisted by sulfuric acid addition [J].
Calcerrada, Ana B. ;
de la Osa, Ana R. ;
Llanos, Javier ;
Dorado, Fernando ;
de Lucas-Consuegra, Antonio .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 231 :310-316
[2]   Stability Testing of PtxSn1-x/C Anodic Catalyst for Renewable Hydrogen Production Via Electrochemical Reforming of Ethanol [J].
Calcerrada, Ana B. ;
de la Osa, Ana R. ;
Dole, Holly A. E. ;
Dorado, Fernando ;
Baranova, Elena A. ;
de Lucas-Consuegra, Antonio .
ELECTROCATALYSIS, 2018, 9 (03) :293-301
[3]   From biomass to pure hydrogen: Electrochemical reforming of bio-ethanol in a PEM electrolyser [J].
Caravaca, A. ;
de Lucas-Consuegra, A. ;
Calcerrada, A. B. ;
Lobato, J. ;
Valverde, J. L. ;
Dorado, F. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 134 :302-309
[4]   Electrochemical reforming of ethanol-water solutions for pure H2 production in a PEM electrolysis cell [J].
Caravaca, A. ;
Sapountzi, F. M. ;
de Lucas-Consuegra, A. ;
Molina-Mora, C. ;
Dorado, F. ;
Valverde, J. L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) :9504-9513
[5]   Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis [J].
Chen, Y. X. ;
Lavacchi, A. ;
Miller, H. A. ;
Bevilacqua, M. ;
Filippi, J. ;
Innocenti, M. ;
Marchionni, A. ;
Oberhauser, W. ;
Wang, L. ;
Vizza, F. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Electrochemical reforming of alcohols on nanostructured platinum-tin catalyst-electrodes [J].
de la Osa, A. R. ;
Calcerrada, A. B. ;
Valverdea, J. L. ;
Baranova, E. A. ;
de Lucas-Consuegra, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 179 :276-284
[7]   Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor [J].
de Paula, Joanna ;
Nascimento, Deborah ;
Linares, Jose J. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (07) :689-700
[8]   Electrode processes in black liquor electrolysis and their significance for hydrogen production [J].
Ghatak, Himadri Roy ;
Kumar, Satish ;
Kundu, P. P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (12) :2904-2911
[9]   Electrolysis of black liquor for hydrogen production: Some initial findings [J].
Ghatak, Himadri Roy .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (07) :934-938
[10]   Electrochemical reforming vs. catalytic reforming of ethanol: A process energy analysis for hydrogen production [J].
Gutierrez-Guerra, N. ;
Jimenez-Vazquez, M. ;
Serrano-Ruiz, J. C. ;
Valverde, J. L. ;
de Lucas-Consuegra, A. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2015, 95 :9-16