Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature

被引:22
作者
Deshmukh, S [1 ]
Al-Eid, A [1 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
关键词
scalar curvature; lower bounds of eigenvalues; isometric to a sphere;
D O I
10.1007/BF02922246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be an n-dimensional compact and connected Riemannian manifold of constant scalar curvature. If the sectional curvatures of M are bounded below by a constant alpha>0, and the Ricci curvature satisfies Ric <=(n-1)alpha delta, delta >= 1, then it is shown that either M is isometric to the n-sphere S-n (alpha) or else each nonzero eigenvalue lambda of the Laplacian acting on the smooth Junctions of M satisfies the following: lambda(2)+3n alpha(delta-2)lambda+2n alpha(2)delta(1+(n-1)delta)>0.
引用
收藏
页码:589 / 606
页数:18
相关论文
共 10 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
DESHMUKH S, 1999, DIFFER GEOM APPL, P47
[3]  
Gallot S., 1990, RIEMANNIAN GEOMETRY
[4]  
Gray A., 1978, Geom. Dedicta, V7, P259
[5]  
Obata M., 1962, J MATH SOC JAPAN, V14, P333, DOI DOI 10.2969/JMSJ/01430333
[6]  
SCHOEN R, 1984, J DIFFER GEOM, V20, P479
[7]  
Simon E., 1878, ARACHNIDES FRANCE, V4, P1
[8]  
Tanno S, 1973, TOHOKU MATH J, V25, P391
[9]  
Yamabe H., 1960, Osaka Math. J., V12, P21
[10]  
Yau S T., 1982, Problem Section, Seminar on Differential Geometry