Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature

被引:22
|
作者
Deshmukh, S [1 ]
Al-Eid, A [1 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
关键词
scalar curvature; lower bounds of eigenvalues; isometric to a sphere;
D O I
10.1007/BF02922246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) be an n-dimensional compact and connected Riemannian manifold of constant scalar curvature. If the sectional curvatures of M are bounded below by a constant alpha>0, and the Ricci curvature satisfies Ric <=(n-1)alpha delta, delta >= 1, then it is shown that either M is isometric to the n-sphere S-n (alpha) or else each nonzero eigenvalue lambda of the Laplacian acting on the smooth Junctions of M satisfies the following: lambda(2)+3n alpha(delta-2)lambda+2n alpha(2)delta(1+(n-1)delta)>0.
引用
收藏
页码:589 / 606
页数:18
相关论文
共 50 条