The Role of Succinate in the Regulation of Intestinal Inflammation

被引:217
作者
Connors, Jessica [1 ]
Dawe, Nick [2 ]
Van Limbergen, Johan [1 ,2 ]
机构
[1] IWK Hlth Ctr, Div Gastroenterol, Halifax, NS B3K 6R8, Canada
[2] Dalhousie Univ, Dept Microbiol & Immunol, Halifax, NS B3H 4R2, Canada
基金
加拿大健康研究院;
关键词
inflammatory bowel disease; microbiome; dysbiosis; metabolite; metabolic receptor; CHAIN FATTY-ACIDS; GUT MICROBIOTA; FUNCTIONAL-CHARACTERIZATION; CELL-PROLIFERATION; METABOLISM; HYPOXIA; GPR91; CYCLE; BUTYRATE; SIGNAL;
D O I
10.3390/nu11010025
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Succinate is a metabolic intermediate of the tricarboxylic acid (TCA) cycle within host cells. Succinate is also produced in large amounts during bacterial fermentation of dietary fiber. Elevated succinate levels within the gut lumen have been reported in association with microbiome disturbances (dysbiosis), as well as in patients with inflammatory bowel disease (IBD) and animal models of intestinal inflammation. Recent studies indicate that succinate can activate immune cells via its specific surface receptor, succinate receptor 1(SUCNR1), and enhance inflammation. However, the role of succinate in inflammatory processes within the gut mucosal immune system is unclear. This review includes current literature on the association of succinate with intestinal inflammation and the potential role of succinate-SUCNR1 signaling in gut immune functions.
引用
收藏
页数:12
相关论文
共 81 条
[1]   Citric Acid Cycle and Role of its Intermediates in Metabolism [J].
Akram, Muhammad .
CELL BIOCHEMISTRY AND BIOPHYSICS, 2014, 68 (03) :475-478
[2]   Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota [J].
Albenberg, Lindsey ;
Esipova, Tatiana V. ;
Judge, Colleen P. ;
Bittinger, Kyle ;
Chen, Jun ;
Laughlin, Alice ;
Grunberg, Stephanie ;
Baldassano, Robert N. ;
Lewis, James D. ;
Li, Hongzhe ;
Thom, Stephen R. ;
Bushman, Frederic D. ;
Vinogradov, Sergei A. ;
Wu, Gary D. .
GASTROENTEROLOGY, 2014, 147 (05) :1055-+
[3]  
Ariake Koichiro, 2000, Journal of Medical and Dental Sciences, V47, P233
[4]  
Ariza Ana Carolina, 2012, Front Endocrinol (Lausanne), V3, P22, DOI 10.3389/fendo.2012.00022
[5]   Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways [J].
Bringaud, Frederic ;
Biran, Marc ;
Millerioux, Yoann ;
Wargnies, Marion ;
Allmann, Stefan ;
Mazet, Muriel .
MOLECULAR MICROBIOLOGY, 2015, 96 (05) :917-926
[6]   Hypoxia: an alarm signal during intestinal inflammation [J].
Colgan, Sean P. ;
Taylor, Cormac T. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2010, 7 (05) :281-287
[7]   The Gut Commensal Bacteroides thetaiotaomicron Exacerbates Enteric Infection through Modification of the Metabolic Landscape [J].
Curtis, Meredith M. ;
Hu, Zeping ;
Klimko, Claire ;
Narayanan, Sanjeev ;
Deberardinis, Ralph ;
Sperandio, Vanessa .
CELL HOST & MICROBE, 2014, 16 (06) :759-769
[8]   Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis [J].
De Vadder, Filipe ;
Kovatcheva-Datchary, Petia ;
Zitoun, Carine ;
Duchampt, Adeline ;
Backhed, Fredrik ;
Mithieux, Gilles .
CELL METABOLISM, 2016, 24 (01) :151-157
[9]   Hypoxia, HIF1 and glucose metabolism in the solid tumour [J].
Denko, Nicholas C. .
NATURE REVIEWS CANCER, 2008, 8 (09) :705-713
[10]   Expression and localization of GPR91 and GPR99 in murine organs [J].
Diehl, Julia ;
Gries, Barbara ;
Pfeil, Uwe ;
Goldenberg, Anna ;
Mermer, Petra ;
Kummer, Wolfgang ;
Paddenberg, Renate .
CELL AND TISSUE RESEARCH, 2016, 364 (02) :245-262