Unified derivation of Korteweg-de Vries-Zakharov-Kuznetsov equations in multispecies plasmas

被引:50
作者
Verheest, F
Mace, RL
Pillay, SR
Hellberg, MA
机构
[1] State Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium
[2] Univ Durban Westville, Sch Phys Sci, Dept Phys, ZA-4000 Durban, South Africa
[3] Univ Natal, Sch Pure & Appl Phys, ZA-4041 Durban, South Africa
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 03期
关键词
D O I
10.1088/0305-4470/35/3/321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ordinary, modified and mixed Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equations governing the oblique propagation of electrostatic modes in magnetized plasmas have been (re)derived in a fully systematic way for general mixtures of hot isothermal, warm adiabatic fluid and cold immobile background species. The ordinary KdV-ZK equation is the standard paradigm, but for more complicated plasma compositions the soliton character can switch from compressive to rarefactive or vice versa, at critical densities and temperatures. For these special values the modified KdV-ZK equation is to be used, whereas near such critical values a mixed KdV-ZK equation can model double layers. Since the description is given in physical rather than normalized variables for genuine multispecies plasmas, widely different frequency regimes and plasma models can be treated and the general features compared. Applications include electron- and ion-acoustic modes in normal plasmas with one or two hot Boltzmann electron species, or ion- and dust-acoustic modes in dusty plasmas, depending on how the heavier components are modelled. Special emphasis is given to a discussion of critical regimes for the better known plasma electrostatic modes, leading to new results and better physical insight.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 37 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   ARBITRARY-AMPLITUDE THEORY OF ION-ACOUSTIC SOLITONS IN WARM MULTI-FLUID PLASMAS [J].
BABOOLAL, S ;
BHARUTHRAM, R ;
HELLBERG, MA .
JOURNAL OF PLASMA PHYSICS, 1989, 41 :341-353
[3]   CUTOFF CONDITIONS AND EXISTENCE DOMAINS FOR LARGE-AMPLITUDE ION-ACOUSTIC SOLITONS AND DOUBLE-LAYERS IN FLUID PLASMAS [J].
BABOOLAL, S ;
BHARUTHRAM, R ;
HELLBERG, MA .
JOURNAL OF PLASMA PHYSICS, 1990, 44 :1-23
[4]   LABORATORY OBSERVATION OF THE DUST-ACOUSTIC WAVE MODE [J].
BARKAN, A ;
MERLINO, RL ;
DANGELO, N .
PHYSICS OF PLASMAS, 1995, 2 (10) :3563-3565
[5]   Electron-acoustic solitons in an electron-beam plasma system [J].
Berthomier, M ;
Pottelette, R ;
Malingre, M ;
Khotyaintsev, Y .
PHYSICS OF PLASMAS, 2000, 7 (07) :2987-2994
[6]  
BLIOKH P, 1995, DUSTY SELFGRAVIATION
[7]   PROPAGATION OF ION-ACOUSTIC-WAVES IN A MULTICOMPONENT PLASMA [J].
DAS, GC ;
TAGARE, SG .
PLASMA PHYSICS AND CONTROLLED FUSION, 1975, 17 (12) :1025-1032
[8]   Dynamical behavior of the soliton formation and propagation in magnetized plasma [J].
Das, GC ;
Sarma, J ;
Gao, YT ;
Uberoi, C .
PHYSICS OF PLASMAS, 2000, 7 (06) :2374-2380
[9]   ION-ACOUSTIC SOLITONS IN MAGNETIZED MULTI-COMPONENT PLASMAS INCLUDING NEGATIVE-IONS [J].
DAS, KP ;
VERHEEST, F .
JOURNAL OF PLASMA PHYSICS, 1989, 41 :139-155
[10]   STABILITY OF ION-ACOUSTIC CNOIDAL AND SOLITARY WAVES IN A MAGNETIZED PLASMA [J].
DAS, KP ;
SLUIJTER, FW ;
VERHEEST, F .
PHYSICA SCRIPTA, 1992, 45 (04) :358-363