Homogenization Modeling of Periodic Magnetic Composite Structures

被引:0
作者
Xiong, Zubiao [1 ]
Chen, Zhong [1 ]
机构
[1] ETS Lindgren Inc, RF Engn, Cedar Pk, TX 78613 USA
来源
2017 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY (EMCSI) | 2017年
关键词
periodic composite; effective permeability; homogenization; mixing rule; ferrite tile; gap effect; WEDGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional closed-form homogenizing rules may be not accurate if the contrast of material properties is high, such as the case of ferrite tiles with gaps used in EMC anechoic chambers. A new homogenization method is proposed to handle such extreme cases. It uses the field solution of a single unit cell illuminated by a plane wave incident in the normal direction. By doing this, the physical interactions between adjacent inclusions can be taken into account. Numerical results demonstrate the superiority of the proposed method over conventional closed form homogenizing rules.
引用
收藏
页码:437 / 441
页数:5
相关论文
共 50 条
[41]   Homogenization of sandwich structures [J].
Rabczuk, T ;
Kim, JY ;
Samaniego, E ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (07) :1009-1027
[42]   Homogenization and artificial neural network prediction of elastic properties in triply periodic minimal surface structures [J].
Mele, Mattia ;
Milan, Gianmarco ;
Paffetti, Andrea ;
De Agostinis, Massimiliano ;
Fini, Stefano ;
Olmi, Giorgio ;
Croccolo, Dario .
PROGRESS IN ADDITIVE MANUFACTURING, 2025,
[43]   Homogenization of Mechanical Properties for Material Extrusion Periodic Lattice Structures Considering Joint Stiffening Effects [J].
Park, Sang-In ;
Rosen, David W. .
JOURNAL OF MECHANICAL DESIGN, 2018, 140 (11)
[44]   Non Linear Homogenization for Calculation of Electromagnetic Properties of Soft Magnetic Composite Materials [J].
Belkadi, M. ;
Ramdane, B. ;
Trichet, D. ;
Fouladgar, J. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (10) :4317-4320
[45]   Multiscale Modeling and Simulation of Composite Materials and Structures [J].
Fish, Jacob .
MULTISCALE METHODS IN COMPUTATIONAL MECHANICS: PROGRESS AND ACCOMPLISHMENTS, 2011, 55 :215-231
[46]   Periodic homogenization in the context of structured deformations [J].
Amar, Micol ;
Matias, Jose ;
Morandotti, Marco ;
Zappale, Elvira .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04)
[47]   Homogenization for locally periodic elliptic operators [J].
Senik, Nikita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
[48]   KINETIC DECOMPOSITION FOR PERIODIC HOMOGENIZATION PROBLEMS [J].
Jabin, Pierre-Emmanuel ;
Tzavaras, Athanasios E. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (01) :360-390
[49]   Boundary homogenization for periodic arrays of absorbers [J].
Muratov, Cyrill B. ;
Shvartsman, Stanislav Y. .
MULTISCALE MODELING & SIMULATION, 2008, 7 (01) :44-61
[50]   Homogenization and localization in locally periodic transport [J].
Allaire, G ;
Bal, G ;
Siess, V .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :1-30