Homogenization Modeling of Periodic Magnetic Composite Structures

被引:0
|
作者
Xiong, Zubiao [1 ]
Chen, Zhong [1 ]
机构
[1] ETS Lindgren Inc, RF Engn, Cedar Pk, TX 78613 USA
来源
2017 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY (EMCSI) | 2017年
关键词
periodic composite; effective permeability; homogenization; mixing rule; ferrite tile; gap effect; WEDGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional closed-form homogenizing rules may be not accurate if the contrast of material properties is high, such as the case of ferrite tiles with gaps used in EMC anechoic chambers. A new homogenization method is proposed to handle such extreme cases. It uses the field solution of a single unit cell illuminated by a plane wave incident in the normal direction. By doing this, the physical interactions between adjacent inclusions can be taken into account. Numerical results demonstrate the superiority of the proposed method over conventional closed form homogenizing rules.
引用
收藏
页码:437 / 441
页数:5
相关论文
共 50 条
  • [1] Homogenization of Periodic Structures Using the FEM
    Bardi, Istvan
    Tharp, Jefferson
    Petersson, Rickard
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 157 - 160
  • [2] On the homogenization of periodic beam-like structures
    Penta, Francesco
    Esposito, Luca
    Pucillo, Giovanni Pio
    Rosiello, Vincenzo
    Gesualdo, Antonio
    AIAS2017 - 46TH CONFERENCE ON STRESS ANALYSIS AND MECHANICAL ENGINEERING DESIGN, 2018, 8 : 399 - 409
  • [3] Homogenization of non-periodic masonry structures
    Cluni, F
    Gusella, V
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (07) : 1911 - 1923
  • [4] A boundary element method for homogenization of periodic structures
    Lukas, Dalibor
    Of, Gunther
    Zapletal, Jan
    Bouchala, Jiri
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1035 - 1052
  • [5] Homogenization of periodic structures via Bloch decomposition
    Conca, C
    Vanninathan, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (06) : 1639 - 1659
  • [6] Elastic waves and homogenization in oblique periodic structures
    Zalipaev, VV
    Movchan, AB
    Poulton, CG
    McPhedran, RC
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2024): : 1887 - 1912
  • [7] Periodic boundary conditions for the numerical homogenization of composite tubes
    Gelebart, Lionel
    COMPTES RENDUS MECANIQUE, 2011, 339 (01): : 12 - 19
  • [8] Computational homogenization of periodic beam-like structures
    Cartraud, P
    Messager, T
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (3-4) : 686 - 696
  • [9] A REMARK ABOUT THE PERIODIC HOMOGENIZATION OF CERTAIN COMPOSITE FIBERED MEDIA
    Murat, Francois
    Sili, Ali
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (01) : 125 - 142
  • [10] Homogenization of thermoelasticity processes in composite materials with periodic structure of heterogeneities
    Savatorova, V. L.
    Talonov, A. V.
    Vlasov, A. N.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (08): : 575 - 596