Optimization of continuous variables quantum key distribution using discrete modulation

被引:0
作者
Pereira, Daniel [1 ,2 ]
Silva, Nuno A. [1 ]
Almeida, Margarida [1 ,2 ]
Pinto, Armando N. [1 ,2 ]
机构
[1] Univ Aveiro, Inst Telecomunicacoes, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Elect Telecommun & Informat, Campus Univ Santiago, P-3810193 Aveiro, Portugal
来源
EMERGING IMAGING AND SENSING TECHNOLOGIES FOR SECURITY AND DEFENCE VII | 2022年 / 12274卷
关键词
Continuous Variables; Quantum Key Distribution; Discrete Modulated; Probabilistic Constellation Shaping;
D O I
10.1117/12.2638896
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Continuous Variables Quantum Key Distribution (CV-QKD) tackles the problem of the generation and distribution of cryptographic keys without assuming any computational limitations while employing standard telecom equipment. Gaussian Modulation (GM) theoretically maximizes the information a CV-QKD system is capable of transmitting while exhibiting a higher resistance to excess channel noise. However, GM-CV-QKD protocols put an extreme burden on the transmitter's random number source and tend to be more susceptible to imperfect state preparation. Due to these difficulties, most experimental implementations of CV-QKD have used Discrete Modulation (DM). The closer the DM constellation approaches a GM one, the closer the theoretical performance of the associated system will be to the optimum value. To achieve this, high-cardinality constellations, coupled with probabilistic shaping, can be explored. However, choosing a too complex constellation will cause the modulation stage imperfections to again become apparent. Thus, the choice of the constellation format is not direct and is of high importance. In this work we present a methodology to determine the optimum constellation for a given DM-CV-QKD system, taking into account the limitations of the modulation stage, choosing from a variety of M-QAM and M-APSK constellations coupled with probabilistic shaping. Our obtained methodology will allow for the optimum modulation format for each specific system to be selected.
引用
收藏
页数:7
相关论文
共 16 条
[1]  
Almeida M., 2021, OPT EXPRESS
[2]  
Almeida M., 2021, THESIS AVEIRO
[3]   A comparison between APSK and QAM in wireless tactical scenarios for land mobile systems [J].
Baldi, Marco ;
Chiaraluce, Franco ;
de Angelis, Antonio ;
Marchesani, Rossano ;
Schillaci, Sebastiano .
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2012,
[4]   CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION PROTOCOLS WITH EIGHT-STATE DISCRETE MODULATION [J].
Becir, A. ;
El-Orany, F. A. A. ;
Wahiddin, M. R. B. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (01)
[5]   Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation [J].
Denys, Aurelie ;
Brown, Peter ;
Leverrier, Anthony .
QUANTUM, 2021, 5
[6]   Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution [J].
Kaur, Eneet ;
Guha, Saikat ;
Wilde, Mark M. .
PHYSICAL REVIEW A, 2021, 103 (01)
[7]   Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals [J].
Kleis, Sebastian ;
Rueckmann, Max ;
Schaeffer, Christian G. .
OPTICS LETTERS, 2017, 42 (08) :1588-1591
[8]   Continuous-Variable Quantum Key Distribution with Gaussian Modulation-The Theory of Practical Implementations [J].
Laudenbach, Fabian ;
Pacher, Christoph ;
Fung, Chi-Hang Fred ;
Poppe, Andreas ;
Peev, Momtchil ;
Schrenk, Bernhard ;
Hentschel, Michael ;
Walther, Philip ;
Huebel, Hannes .
ADVANCED QUANTUM TECHNOLOGIES, 2018, 1 (01)
[9]  
Leverrier A., 2009, THESIS TCLCCOM PARIS
[10]   Continuous-variable quantum key distribution under strong channel polarization disturbance [J].
Liu, Wenyuan ;
Cao, Yanxia ;
Wang, Xuyang ;
Li, Yongmin .
PHYSICAL REVIEW A, 2020, 102 (03)