Improvement of hydrogen-storage properties of MgH2 by addition of Li3N, LiBH4, Fe and/or Ti

被引:10
作者
Song, Myoung Youp [1 ]
Kwon, Sung Nam [2 ]
Kwak, Young Jun [3 ]
Park, Hye Ryoung [4 ]
机构
[1] Chonbuk Natl Univ, Engn Res Inst, Res Ctr Adv Mat Dev, Div Adv Mat Engn, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Dept Hydrogen & Fuel Cells Engn, Specialized Grad Sch, Jeonju 561756, South Korea
[3] Chonbuk Natl Univ, Dept Mat Engn, Grad Sch, Jeonju 561756, South Korea
[4] Chonnam Natl Univ, Sch Appl Chem Engn, Kwangju 500757, South Korea
关键词
Hydrides; Metals; Electron microscopy; X-ray diffraction; Energy storage; MAGNESIUM; NI; PERFORMANCE; COMPOSITE;
D O I
10.1016/j.materresbull.2012.10.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to increase hydrogen storage capacity of MgH2-based materials, Li3N, LiBH4, Fe, and/or Ti were added. Mixtures with compositions of 50MgH(2)-50Li(3)N, 40Mg-10MgH(2)-50Li(3)N, 68MgH(2)-17LiBH(4)-15Fe, and 70MgH(2)-17LiBH(4)-13Ti were prepared by reactive mechanical grinding and their hydrogen-storage properties were examined. 40Mg-10MgH(2)-50Li(3)N after hydriding-dehydriding cycling contains Mg3N2, LiMgN, LiOH, and MgO, LiH, and NH3 center dot 2H(2)O, suggesting a reaction of 6Mg + 4MgH(2) + 4Li(3)N + 23H(2)O -> Mg3N2 + LiMgN + 11LiOH + 3NH(3)center dot 2H(2)O + 6MgO + 7H(2). 70MgH(2)-17LiBH(4)-13Ti after hydriding-dehydriding cycling contained MgH2, TiH1.924, Mg, and MgO. Among the samples studied, 70MgH(2)-17LiBH(4)-13Ti had the highest hydriding rate in the beginning. The as-milled 70MgH(2)-17LiBH(4)-13Ti sample absorbed 3.33 wt% H for 5 min, 3.83 wt% H for 10 min, and 3.94 wt% H for 60 min at 573 K under 12 bar H-2. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 21 条
[1]   Reversibility aspect of lithium borohydrides [J].
Au, Ming ;
Walters, R. Tom .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (19) :10311-10316
[2]   Study of Mg-M (M = Co, Ni and Fe) mixture elaborated by reactive mechanical alloying - hydrogen sorption properties [J].
Bobet, JL ;
Akiba, E ;
Nakamura, Y ;
Darriet, B .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) :987-996
[3]   Role of additives in LiBH4-MgH2 reactive hydride composites for sorption kinetics [J].
Boesenberg, U. ;
Kim, J. W. ;
Gosslar, D. ;
Eigen, N. ;
Jensen, T. R. ;
von Colbe, J. M. Bellosta ;
Zhou, Y. ;
Dahms, M. ;
Kim, D. H. ;
Guenther, R. ;
Cho, Y. W. ;
Oh, K. H. ;
Klassen, T. ;
Bormann, R. ;
Dornheim, M. .
ACTA MATERIALIA, 2010, 58 (09) :3381-3389
[4]   Dehydriding and re-hydriding properties of high-energy ball milled LiBH4 + MgH2 mixtures [J].
Crosby, Kyle ;
Shaw, Leon L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (14) :7519-7529
[5]   Improving solid-state hydriding and dehydriding properties of the LiBH4 plus MgH2 system with the addition of Mn and V dopants [J].
Crosby, Kyle ;
Wan, Xuefei ;
Shaw, Leon L. .
JOURNAL OF POWER SOURCES, 2010, 195 (21) :7380-7385
[6]   Microstructural study of the LiBH4-MgH2 reactive hydride composite with and without Ti-isopropoxide additive [J].
Deprez, E. ;
Justo, A. ;
Rojas, T. C. ;
Lopez-Cartes, C. ;
Minella, C. Bonatto ;
Boesenberg, U. ;
Dornheim, M. ;
Borrnann, R. ;
Fernandez, A. .
ACTA MATERIALIA, 2010, 58 (17) :5683-5694
[7]   Synthesis of nanocrystalline hydrogen storage materials [J].
Huot, J ;
Tremblay, ML ;
Schulz, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2003, 356 :603-607
[8]   Carbon nanocomposites synthesized by high-energy mechanical milling of graphite and magnesium for hydrogen storage [J].
Imamura, H ;
Kusuhara, M ;
Minami, S ;
Matsumoto, M ;
Masanari, K ;
Sakata, Y ;
Itoh, K ;
Fukunaga, T .
ACTA MATERIALIA, 2003, 51 (20) :6407-6414
[9]  
Kwon S.N., 2007, THESIS CHONBUK NATL
[10]   Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti [J].
Kwon, SungNam ;
Baek, SungHwan ;
Mumm, Daniel R. ;
Hong, Seong-Hyeon ;
Song, MyoungYoup .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (17) :4586-4592