TILT STABILITY, UNIFORM QUADRATIC GROWTH, AND STRONG METRIC REGULARITY OF THE SUBDIFFERENTIAL

被引:65
作者
Drusvyatskiy, D. [1 ]
Lewis, A. S. [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
tilt stability; variational analysis; subdifferentials; quadratic growth; strong metric regularity; prox-regularity;
D O I
10.1137/120876551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that uniform second-order growth, tilt stability, and strong metric regularity of the subdifferential-three notions that have appeared in entirely different settings-are all essentially equivalent for any lower-semicontinuous, extended real-valued function.
引用
收藏
页码:256 / 267
页数:12
相关论文
共 16 条
[11]   Tilt stability of a local minimum [J].
Poliquin, RA ;
Rockafellar, RT .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) :287-299
[12]   Prox-regular functions in variational analysis [J].
Poliquin, RA ;
Rockafellar, RT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (05) :1805-1838
[13]  
Rockafellar R., 2009, MONOGR MATH
[14]  
Rockafellar R. T., 1998, GRUNDLEHREN MATH WIS, V317
[15]  
Ruszczynski A. P., 2006, Nonlinear optimization
[16]  
Wolenski, 1998, TEXTS MATH, V178